簡易檢索 / 詳目顯示

研究生: 林義倫
Lin, Yi Lun
論文名稱: 似噪音脈衝產生超連續光譜源應用於時域及頻域光學同調斷層掃描之研究
Supercontinuum Generated by Noise-Like Pulses for Time-Domain and Spectral-Domain Optical Coherence Tomography
指導教授: 潘犀靈
Pan, Ci Ling
口試委員: 賴暎杰
Lai, Yin Chieh
張存續
Chang, Tsun Hsu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 95
中文關鍵詞: 似噪音脈衝光學同調斷層掃描超連續光譜
外文關鍵詞: Noise-like pulse, optical coherence tomography, supercontinuum generation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們設計及架設了光學同調斷層掃描(Optical coherence tomography, OCT)系統。光源為利用似噪音脈衝在單模光纖中產生的超連續光譜(Supercontinuum generation, SC);中心波長約為1300奈米,頻譜半高全寬可達365奈米。我們將此光源應用於自由空間以及光纖式OCT以估計系統之縱向的解析度。在自由空間的時域OCT中,縱向解析度可達2.3微米與理論解析度2.1微米相當。在自由空間的頻域OCT中,其縱向解析度為2.8微米,理論解析度2.7微米。在全光纖式的頻域OCT中,受限於光纖零組件的頻寬,其縱向解析度為6.4微米,理論解析度5.3微米,訊噪比126.7 dB,約較一般文獻中報導者高20 dB。實驗顯示似噪音脈衝超連續光譜源用於OCT,可有效降低光斑(speckle),其訊噪比為 41.32 dB,contrast-to-noise ratio (CNR) = 2.86 dB以及equivalent number of looks (ENL) = 3.91. 將此光源經適當長度的色散位移光纖(dispersion-shifted fiber),可經時域拉伸的方式,形成掃頻光源,縱向掃描速率可高於5MHz,以達到快速掃描的OCT。


    In this thesis, we designed and studied a broadband light source for time-domain and spectral-domain optical coherence tomography (TD-OCT, SD-OCT). The supercontinuum (SC) was generated by noise-like pulses from an Yb-doped fiber laser in single mode fiber. The central wavelength of the generated SC is 1300 nm and the full width at half maximum can reach 365 nm. The free space and fiber-based OCT were constructed to examine the performance of the new broadband source. For TD-OCT, the experimentally measured point spread function (PSF) indicates an axial resolution of 2.3 μm as compared to a theoretical resolution of 2.1 μm. For free space SD-OCT, the experimentally measured PSF indicates an axial resolution of 2.8 μm as compared to a theoretical resolution of 2.7 μm. For fiber-based SD-OCT, due to the limited optical bandwidth of fiber components of the OCT system, the experimentally measured PSF indicates an axial resolution of 6.4 μm as compared to a theoretical resolution of 5.3 μm and the signal-to-noise ratio can reach 126.7 dB. Using the noise-like SC light source, speckle in the OCT images can be reduced significantly. In the regions of interest, the speckle signal-to-noise ratio (SNR) = 41.32 dB, contrast-to-noise ratio (CNR) = 2.86 dB and equivalent number of looks (ENL) = 3.91.
    In order to achieve real-time OCT, time-stretching technique was applied to generate the swept light source. Making use of dispersion-shifted fiber, we generated the scanning rate higher than 5 MHz from our noise-like SC light source.

    摘要 I Abstract II 致謝 III Table of Contents V List of Figures IX List of Tables XIV List of Abbreviations XV Chapter 1 Introduction 1 Chapter 2 Background 6 2.1 Mode-locking 6 2.1.1 Mode-locking theory 6 2.1.2 Active mode-locking 8 2.1.3 Passive mode-locking 9 2.1.4 Nonlinear polarization evolution (NPE) 10 2.2 Physical mechanisms of noise-like pulses (NLPs) 12 2.3 Optical fiber amplifier 12 2.3.1 Rare-earth doped fiber 13 2.3.2 Ytterbium (Yb) doped fiber 13 2.3.3 Doped fiber amplifier 14 2.3.4 Pumping wavelength of laser diode 15 2.4 Nonlinearities in optical fibers 15 2.4.1 Self-phase modulation (SPM) 15 2.4.2 Stimulated Raman scattering (SRS) 17 2.5 Supercontinuum generation (SCG) 18 2.6 Optical coherence tomography (OCT) 21 2.6.1 Interferometry in time-domain and spectral-/Fourier-domain detection 22 2.6.2 Axial resolution 24 2.6.3 Lateral resolution 25 2.6.4 Time-domain OCT (TD-OCT) 27 2.6.5 Spectral-domain OCT (SD-OCT) 27 2.6.6 Axial Measurement Range 29 2.6.7 Sensitivity 31 2.6.8 Sensitivity fall-off 33 2.7 Speckle effect in OCT 35 2.7.1 Origin 36 2.7.2 Speckle analysis 38 Chapter 3 Light Source 40 3.1 Dispersion-mapped fiber laser 40 3.1.1 Experimental setup 40 3.1.2 Characteristics 44 3.1.3 Amplification 48 3.1.4 Supercontinuum generation (SCG) 52 3.2 All-normal dispersion (ANDi) fiber laser 54 3.2.1 Experimental setup 54 3.2.2 Characteristics 56 3.2.3 Supercontinuum generation (SCG) 58 Chapter 4 Optical Coherence Tomography (OCT) 59 4.1 Interferometer 59 4.1.1 Fiber-based Michelson interferometer 60 4.1.2 Free space Michelson interferometer 61 4.1.3 A scan schemes 61 4.1.4 Lateral scan method 67 4.2 Signal analysis in SD-OCT 68 4.2.1 Subtraction of the background and interpolation of the wavenumber 68 4.2.2 Dispersion compensation 69 4.2.3 Fourier transform 72 4.3 Free space time-domain OCT (TD-OCT) 72 4.3.1 Experimental setup 73 4.3.2 Point spread function (PSF) and resolution 74 4.3.3 Sensitivity 75 4.3.4 Axial measurement range 76 4.3.5 OCT image 76 4.4 Fiber-based SD-OCT 76 4.4.1 Experimental setup 77 4.4.2 Point spread function (PSF) and resolution 77 4.4.3 Sensitivity 79 4.4.4 Axial measurement range 79 4.5 Free space spectral-domain OCT (SD-OCT) 80 4.5.1 Experimental setup 81 4.5.2 Point spread function (PSF) and resolution 81 4.5.3 Sensitivity 82 4.5.4 Axial measurement range 83 4.5.5 OCT image 84 4.6 Comparison and discussion 84 4.6.1 Comparison 84 4.6.2 Speckle effect 85 Chapter 5 Conclusion 88 Chapter 6 Future Works 89 Reference 91

    1. J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, and A.J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Optics letters 22(18), 1439-1441 (1997).
    2. J.F. De Boer, T.E. Milner, M.J. van Gemert, and J.S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Optics letters 22(12), 934-936 (1997).
    3. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, and C.A. Puliafito, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
    4. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," American journal of ophthalmology 116(1), 113-114 (1993).
    5. E.A. Swanson, J. Izatt, C. Lin, J. Fujimoto, J. Schuman, M. Hee, D. Huang, and C. Puliafito, "In vivo retinal imaging by optical coherence tomography," Optics letters 18(21), 1864-1866 (1993).
    6. J.A. Izatt and M.A. Choma, Theory of Optical Coherence Tomography, in Optical Coherence Tomography, W. Drexler and J. Fujimoto, Editors., Springer Berlin Heidelberg. p. 47-72. (2008)
    7. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Optics Communications 117(1), 43-48 (1995).
    8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of biomedical optics 7(3), 457-463 (2002).
    9. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Optics Letters 28(21), 2067-2069 KW - Noise in imaging systems KW - Noise in imaging systems KW - Medical optics instrumentation KW - Optical coherence tomography UR - http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067 (2003).
    10. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Optics Express 11(8), 889-894 KW - Optical coherence tomography KW - Medical optics instrumentation UR - http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889 (2003).
    11. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Optics express 12(11), 2404-2422 (2004).
    12. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Optics Express 12(3), 367-376 (2004).
    13. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Optics Express 11(26), 3598-3604 (2003).
    14. T. Bajraszewski, M. Wojtkowski, A. Szkulmowska, W. Fojt, M. Szkulmowski, and A. Kowalczyk. Fourier domain optical coherence tomography using optical frequency comb. in Biomedical Optics (BiOS) 2007. 2007. International Society for Optics and Photonics.
    15. F. Kuo. A glimpse (or primer) of the Plenary Session —“Medical Imaging Using Optical Coherence Tomography”. Available from: http://blog.cleoconference.org/2011/01/a-glimpse-or-primer-of-the-plenary-session-medical-imaging-using-optical-coherence-tomography/.
    16. A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Reports on Progress in Physics 66(2), 239-303 (2003).
    17. J.M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of modern physics 78(4), 1135 (2006).
    18. J.M. Stone and J.C. Knight, "Visibly “white” light generation in uniformphotonic crystal fiber using a microchip laser," Optics Express 16(4), 2670-2675 (2008).
    19. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, and S. Coen, "Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping," Journal of the Optical Society of America B 19(4), 765-771 (2002).
    20. J. Hernandez-Garcia, O. Pottiez, and J. Estudillo-Ayala, "Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser," Laser Physics 22(1), 221-226 (2012).
    21. M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Optics Letters 22(11), 799-801 (1997).
    22. W.E. Lamb, "Theory of an Optical Maser," Physical Review 134(6A), A1429-A1450 (1964).
    23. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics. Wiley. (2007)
    24. S.D. Yang, "Ultrafast Optics (lecture note)," (2013).
    25. C.L. Pan, "Ultrafast and THz Photonics (lecture note)," (2014).
    26. A. Weiner, Ultrafast Optics. Wiley. (2011)
    27. L.E. Hargrove, R.L. Fork, and M.A. Pollack, "LOCKING OF He–Ne LASER MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION," Applied Physics Letters 5(1), 4-5 (1964).
    28. V.J. Matsas, T.P. Newson, D.J. Richardson, and D.N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics Letters 28(15), 1391-1393 (1992).
    29. L.A. Vazquez-Zuniga and Y. Jeong, "Super-Broadband Noise-Like Pulse Erbium-Doped Fiber Ring Laser With a Highly Nonlinear Fiber for Raman Gain Enhancement," Ieee Photonics Technology Letters 24(17), 1549-1551 (2012).
    30. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers," Optics Express 17(23), 20707-20713 (2009).
    31. O. Pottiez, R. Grajales-Coutino, B. Ibarra-Escamilla, E.A. Kuzin, and J.C. Hernandez-Garcia, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics 50(25), E24-E31 (2011).
    32. S. Kobtsev and S. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length," Laser Physics 21(2), 272-276 (2011).
    33. L. Zhao, D. Tang, J. Wu, X. Fu, and S. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics express 15(5), 2145-2150 (2007).
    34. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Optics Express 20(24), 27447-27453 (2012).
    35. D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Optics Express 13(7), 2289-2294 (2005).
    36. C. Aguergaray, A. Runge, M. Erkintalo, and N.G. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Optics letters 38(15), 2644-2646 (2013).
    37. C.J. Koester and E. Snitzer, "Amplification in Fiber Laser," Applied Optics 3(10), 1182-& (1964).
    38. RP Photonics,Rare-earth-doped Gain Media. Available from: http://www.rp-photonics.com/rare_earth_doped_gain_media.html.
    39. K. Lu and N.K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics 91(2), 576-581 (2002).
    40. Y.C. Huang, Principles of nonlinear optics (Course reader). (2014)
    41. F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," Physical Review Letters 19(19), 1097-1100 (1967).
    42. S.A. Planas, N.L. Pires Mansur, C.H. Brito Cruz, and H.L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Optics Letters 18(9), 699-701 (1993).
    43. C.V. Raman and K.S. Krishnan, "A new type of secondary radiation," Nature 121(3048), 501-502 (1928).
    44. R.H. Stolen, E. Ippen, and A. Tynes, "Raman oscillation in glass optical waveguide," Applied Physics Letters 20(2), 62-64 (1972).
    45. J.M. Dudley and J.R. Taylor, Supercontinuum generation in optical fibers. Cambridge University Press. (2010)
    46. G.P. Agrawal, Nonlinear fiber optics. Academic press. (2007)
    47. P.S. Andre, R. Correia, L. Borghesi, A.L. Teixeira, R.N. Nogueira, M.J. Lima, H.J. Kalinowski, F. Da Rocha, and J.L. Pinto, "Raman gain characterization in standard single mode optical fibres for optical simulation purposes," Optica Applicata 33(4), 559-574 (2003).
    48. K. Rottwitt and J.H. Povlsen, "Analyzing the fundamental properties of Raman amplification in optical fibers," Journal of Lightwave Technology 23(11), 3597-3605 (2005).
    49. A. Fercher, C. Hitzenberger, and M. Juchem, "Measurement of intraocular optical distances using partially coherent laser light," Journal of Modern Optics 38(7), 1327-1333 (1991).
    50. S. Chinn, E. Swanson, and J. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Optics letters 22(5), 340-342 (1997).
    51. G. Ha¨usler and M.W. Lindner, "“Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis," Journal of Biomedical Optics 3(1), 21-31 (1998).
    52. S. Moon and D.Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express 14(24), 11575-11584 KW - Optical coherence tomography KW - Optical coherence tomography KW - Sources UR - http://www.opticsexpress.org/abstract.cfm?URI=oe-14-24-11575 (2006).
    53. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Optics Express 11(22), 2953-2963 (2003).
    54. S.H. Yun, C. Boudoux, M.C. Pierce, J.F. de Boer, G.J. Tearney, and B.E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," Ieee Photonics Technology Letters 16(1), 293-295 (2004).
    55. M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Optics Express 11(18), 2183-2189 (2003).
    56. K.K. Chan, Spectral Domain Optical Coherence Tomography System Design: sensitivity fall-off and processing speed enhancement. 2010, UNIVERSITY OF BRITISH COLUMBIA (VANCOUVER.
    57. J.W. Goodman, "Some Fundamental Properties of Speckle," Journal of the Optical Society of America 66(11), 1145-1150 (1976).
    58. J.M. Schmitt, S.H. Xiang, and K.M. Yung, "Speckle in optical coherence tomography," Journal of Biomedical Optics 4(1), 95-105 (1999).
    59. S.M. Gehlbach and F.G. Sommer, "Frequency Diversity Speckle Processing," Ultrasonic Imaging 9(2), 92-105 (1987).
    60. Y. Du, G. Liu, G. Feng, and Z. Chen, "Speckle reduction in optical coherence tomography images based on wave atoms," Journal of Biomedical Optics 19(5), 056009-056009 (2014).
    61. D.C. Adler, T.H. Ko, and J.G. Fujimoto, "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Optics Letters 29(24), 2878-2880 (2004).
    62. M. Hughes, M. Spring, and A. Podoleanu, "Speckle noise reduction in optical coherence tomography of paint layers," Applied Optics 49(1), 99-107 (2010).
    63. A. Zaytsev, C.H. Lin, Y.J. You, C.C. Chung, C.L. Wang, and C.L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics Express 21(13), 16056-16062 (2013).
    64. S.H. Saeid. Computer simulation and performance evaluation of single mode fiber optics. in Proceedings of the World Congress on Engineering. 2012.
    65. A.K. Zaytsev, C.H. Lin, Y.J. You, F.H. Tsai, C.L. Wang, and C.L. Pan, "A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser," Laser Physics Letters 10(4), (2013).
    66. J.P. Gordon, "Dispersive perturbations of solitons of the nonlinear Schrödinger equation," JOSA B 9(1), 91-97 (1992).
    67. S. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electronics Letters 28(8), 806-807 (1992).
    68. N.J. Smith, K. Blow, and I. Andonovic, "Sideband generation through perturbations to the average soliton model," Lightwave Technology, Journal of 10(10), 1329-1333 (1992).
    69. H. Li, Z. Jing, H. Xia, J. Liao, X. Tang, R. Lu, and Y. Liu. Different types of sideband generation in a passively mode-locked soliton fiber laser. in Photonics Asia 2010. 2010. International Society for Optics and Photonics.
    70. S.S. Lin, S.K. Hwang, and J.M. Liu, "Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses," Optics Express 22(4), 4152-4160 (2014).
    71. K.J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," Ieee Journal of Quantum Electronics 25(12), 2665-2673 (1989).
    72. Z. Yaqoob, J. Wu, and C. Yang, "Spectral domain optical coherence tomography: a better OCT imaging strategy," Biotechniques 39(6 Suppl), 0 (2005).
    73. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Optics Express 12(11), 2435-2447 (2004).
    74. Spec sheet from ThorLabs. Available from: http://www.thorlabs.hk/thorcat/2100/DET410-SpecSheet.pdf.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE