研究生: |
楊又璇 Yang, Yu-Hsuan |
---|---|
論文名稱: |
多壁奈米碳管對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究 Study on Mechanical Properties and Torsion Fatigue Behavior of Multi-Wall Carbon Nanotubes for Fiber Reinforced Polymer Laminate Prepreg Composites |
指導教授: |
葉銘泉
Yip, Ming-Chuen |
口試委員: |
葉維磬
Yeh, Wei-Ching 方維倫 Fang, Wei-Leun 葉銘泉 Yip, Ming-Chuen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 多壁奈米碳管 、碳纖維 、環氧樹脂 、機械性質 、扭轉疲勞壽命 |
外文關鍵詞: | Multi-Wall Carbon Nanotudes, Carbon Fiber, Epoxy, Mechanical Properties, Torsion Fatigue Life |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在綠色能源抬頭的世代裡,風力是台灣亦是世界不可忽視的一項綠色能源,尤其是在有風城盛名的新竹更是要極力發展。以往的風力機皆以水平式為主,其缺點必須擁有良好風場、寬闊的地點、噪音…等,本研究主要著重於探討小空間、小功率、任意風向發電之垂直型風力發電機葉片材料性質探討,並利用輕量化、高強度之複合材料取代過往的金屬材料。
現今由於奈米碳管具有質量輕、導電性、高熱傳導度及高熱穩定性等特殊物理特性以及許多潛在的應用如航空、航太、電磁波遮蔽(EMI)材料及靜電釋放材料(ESD) …等上。本研究旨在利用多壁奈米碳管做為補強材(Reinforcement),環氧樹脂為基材(Matrix)之碳纖維積層板複合材料於葉片承受垂直型風力機運轉之靜態機械性質及動態扭轉疲勞特性研究,並探討添加不同比例之多壁奈米碳管對積層板複合材料機械性質與扭轉疲勞壽命影響,且觀察積層板複合材料遭受到不同溫度、濕度與熱循環條件下之抵抗能力,最後以SEM觀察積層板複合材料之破壞斷面驗證其破壞機制。
本研究利用高強度超音波震盪來分散環氧樹脂與多壁奈米碳管溶液,並運用超音波之空蝕效應與高轉速機械攪拌將多壁奈米碳管溶於EPO-622環氧樹脂中,再採用抽真空技術來排除氣泡,並添加多壁奈米碳管含量為0wt%、0.5wt%、1.0wt%、1.5wt% (wt%是與環氧樹脂重量之比值)進行彎曲測試、層間剪切強度、扭轉強度與扭轉疲勞測試,並觀察多壁奈米碳管在碳纖維/環氧樹脂積層板複合材料中之影響。在複合材料製程上採用平織碳纖維織布與環氧樹脂並利用熱壓成型製作積層板複合材料。當多壁奈米碳管添加量達1.5wt%時,在靜態之機械性質與動態之疲勞測試都有最佳的提升量,可以發現添加多壁奈米碳管對碳纖維/環氧樹脂複合材料有顯著的提升效果。在彎曲測試中,1.5wt%多壁奈米碳管添加量之彎曲強度與彎曲模數與未添加多壁奈米碳管之複合材料分別提升約8.97%與11.45%,另外,層間剪切強度則提升約10.74%。而根據扭轉疲勞週次之實驗結果,利用統計學最小平方法得到有加添加多壁奈米碳管與沒添加之積層板複合材料疲勞壽命破壞線性迴歸曲線,可發現多壁奈米碳管對於扭轉疲勞壽命有相當顯著之提升。
Wind power is an inevitable green power in the world and Taiwan in this century, especially at Hsinchu where is called as “Wind City”. The conventional horizontal-axis wind turbine has some disadvantages such as noise, requirement of stable wind field, vast location, etc. The investigation of material properties for blade of the low-power, small space and random-wind-directional power generating vertical-axis wind turbine is a major job in this study. Furthermore, the light-weight and high-strength composite adopted to fabricate wind turbine instead of lated metal materials is also researched in this study.
Carbon nanotubes (CNTs) possess special physical characteristics such as strength, stiffness, light weight, electrical conductivity, highly thermal conductivity and thermal stability, etc. Meanwhile, there is a lot of potential applications such as the aviation, aerospace, electromagnetic interference (EMI) material and electrostatic discharge (ESD), etc. In this research, study of composites composed of multi-wall carbon nanotubes (MWCNTs) as reinforcement and epoxy resin as matrix of laminate for fabricating wind turbine was focused on influence on the static mechanical properties and dynamic torsion fatigue behavior on blade for vertical-axis wind turbine. Additionally, the effect of adding different proportions of MWCNTs of MWCNTs-containing composites on static mechanical properties and dynamic torsion fatigue life was also investigated. And observe the resistant ability of laminates composite treated to various temperatures, humidities and thermal cycles. Finally, morphologies for the fracture surface of laminates composite are observed by thermal emission schottky field scanning electrical microscopy (TFSEM).
In this study, MWCNTs were spread evenly among epoxy resin by using high-efficiency ultrasonication, and MWCNTs were infused into EPO-622 epoxy resin adopting sonic cavitation and high-speed mechanical stirring. Finally, the residual air bubbles were removed using vacuum technique. Flexural, interlaminar shear strength (ILSS), torsion strength and torsion fatigue tests were performed on MWCNTs-filled (0.5wt%, 1.0wt% and 1.5wt% by epoxy resin weight) epoxy resin composites and MWCNTs-unfilled composites to identify the effect of adding MWCNTs on the mechanical properties of carbon fabric-epoxy resin composite. Woven carbon fiber and epoxy resin were adopted to fabricate composite using hot press molding. The highest improvement in static mechanical properties and dynamic torsion fatigue life was obtained when amount of MWCNTs of MWCNTs-containing composite reached to 1.5wt%. Flexural, interlaminar shear stress, torsion and torsion fatigue tests were performed to evaluate the effectiveness of MWCNTs addition on the mechanical properties and fatigue life of the carbon fabric-epoxy resin composite. The flexural strength and flexural modulus of the 1.5wt% MWCNTs-containing composite improved by 8.97% and 11.45%, respectively, compared to that of the composite without MWCNTs. Moreover, the 1.5wt% MWCNTs-containing carbon fabric-epoxy composite showed 10.74% enhancement on the interlaminar shear stress compared to that of composite without MWCNTs. Based on the experimental result, a linear damage model has been fitted with ordinary least squares (OLS) method for unfilled and MWCNTs-filled carbon fabric-epoxy composite. Additionally, the torsion fatigue lift was also improved significantly.
1. 羅建民, “複合材料, ” 科學月刊雜誌社, 金台灣資訊事業有限公司科學月刊雜誌社, 1973年.
http://163.20.22.161/Science/content/1973/00030039/0018.htm
2. “環氧樹脂, ” http://zh.wikipedia.org/, 2010年.
3. http://www.iaa.ncku.edu.tw/~young/pccl/cha3.html
4. I. Al-Bahadly, “Building a wind turbine for rural home,” Energy for Sustainable Development, Vol. 13, (2009), pp.159-165.
5. L. Ferry , D. Perreux , D. Varchon and N. Sicot, “Fatigue Behaviour of Composite Bars Subjected to Bending and Torsion,” Composites Science and Technology, Vol. 59,(1999), pp.575-582.
6. N. H. Tai, C. C. M. Ma and S. H. Wu, “Fatigue Behaviour of Carbon Fibre/PEEK Laminate Composites,” Composites, Vol .26, (1995), pp. 551-559.
7. R. Talreja, “Fatigue of Composite Materials,” Technomic, Pennsylavania U.S.A., (1987).
8. J. M. Whitney, “Fatigue Characterization of Composite Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, (1981), pp.133-151.
9. H. T. Hahn and R.Y. Kim, “Fatigue Behavior of Composite Laminate,” Journal of Composite Materials, Vol. 10, (1976), pp.156-180.
10. W. Hwang and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, (1986), pp.154-165.
11. 鄒慶福, “預扭及溫度效應對擬均向性CFRP複合材料疲勞行為之影響,” 國立清華大學動力機械工程學系碩士論文, (1998).
12. B. W. Jeong, J.K. Lim and S.B. Sinnott, “Elastic Torsional Responses of Carbon Nanotube Systems,” Journal of Applied Physics, Vol. 101, (2007), pp.084309-1~7.
13. A. Esawi and K. Morsi, “Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder,” Composites Part A: Applied Science and Manufacturing, Vol. 38, (2007), pp.646-650.
14. Y. Tomohiro, A. Takahira, A. Akiko, I. Masaru and Y. Takashi, “Fabrication of CNT-Dispersed CFRP Using Length-Controlled CNTs: Measurement of CNT Length and Characterization of Mechanical Properties,” Tsinghua Science and Technology, Vol. 14, (2009), pp.100-104.
15. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Composites Science and Technology, Vol. 62, (2002), pp.1993-1998.
16. Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, “Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-Walled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 475, (2008), pp.157-165.
17. E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T. W. Chou, M. E. Itkis and R. C. Haddon, “Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites,” Langmuir, Vol. 23, (2007), pp.3970-3974.
18. F. H. Zhang, R. G. Wang, X. D. He, C. Wang and L. N. Ren, “Interfacial Shearing Strength and Reinforcing Mechanisms of an Epoxy Composite Reinforced Using a Carbon Nanotube/Carbon Fiber Hybrid,” Journal of Materials Science, Vol. 44, (2009), pp. 3574-3577.
19. Z. Fan, M. H. Santare and S. G. Advani, “Interlaminar Shear Strength of Glass Fiber Reinforced Epoxy Composites Enhanced with Multi-Walled Carbon Nanotubes,” Composites Part A: Applied Science and Manufacturing, Vol. 39, (2008), pp.540-554.
20. F. H. Gojny, Malte H. G. Wichmann, B. Fiedler, W. Bauhofer and K. Schulte, “Influence of Nano-Modification on the Mechanical and Electrical Properties of Conventional Fibre-Reinforced Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 36, (2005), pp.1525-1535.
21. T. Yokozeki, Y. Iwahori and S. Ishiwata, “Matrix Cracking Behaviors in Carbon Fiber/Epoxy Laminates Filled with Cup-Stacked Carbon Nanotubes (CSCNTs),” Composites Part A: Applied Science and Manufacturing, Vol. 38, (2006), pp.917-924.
22. N. A. Siddiqui, R. S. C. Woo, J. K. Kim, C. C. K. Leung and A. Munir, “Mode I Interlaminar Fracture Behavior and Mechanical Properties of CFRPs with Nanoclay-Filled Epoxy Matrix,” Composites Part A: Applied Science and Manufacturing, Vol. 38, (2007), pp.449-460.
23. J. Zhu, V. Khabashesku, A. Imam, R. Crane, K. Lozano and E. Barrera, “Processing and Properties of Polymer Composites Reinforced by Functionalized SWNTs,” The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Vol. 475-479, (2005), pp.1059-1062.
24. S. Lili, Z. Yan, D. Yuexin and Z. Zuiguang, “Interlaminar Shear Property of Modified Glass Fiber Reinforced Polymer with Different MWCNTs,” Chinese Journal of Aeronautics, Vol. 21, (2008), pp.361-369.
25. Y. Geng, M. Y. Liu, X. M. Shi and J. K. Kim, “Effects of Surfactant Treatment on Mechanical and Electrical Properties of CNT/Epoxy Nanocomposites,”Composites: Part A,Vol. 39,(2008),pp.1876-1883.
26. X. F. Li, K. T. Lau and Y. S. Yin, “Mechanical Properties of Epoxy-Based Composites Using Coiled Carbon Nanotubes,” Composites Science and Technology, Vol. 68,(2008), pp.2876-2881.
27. Y. Zhou, F. Pervin, S. Jeelani and P. K. Mallick, “Improvement in Mechanical Properties of Carbon Fabric–Epoxy Composite Using Carbon Nanofibers,” Journal of Materials Processing Technology, Vol. 198, (2008), pp.445-453.
28. A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L. Gorbatikh, S. V. Lomov, A. W. Van Vuure and I. Verpoest, “The Effect of Adding Carbon Nanotubes to Glass/Epoxy Composites in the Fibre Sizing and/or the Matrix,” Composites: Part A, Vol. 41, (2010), pp.532-538.
29. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A.W. Van Vuure, L. Gorbatikh, P. Molsenaers and I. Verpoest, “Influence of Carbon Nanotube Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fiber/Epoxy Composites,” Carbon, Vol. 47, (2009), pp.2914-2923.
30. M. Moniruzzaman, A. Sahin and K. I. Winey, “Improved Mechanical Strength and Electrical Conductivity of Organogels Containing Carbon Nanotubes,”Carbon,Vol. 47, (2009), pp.645-650.
31. T. Ogasawara, Y. Ishida and T. Kasai, “Mechanical Properties of Carbon Fiber/Fullerene-Dispersed Epoxy Composites,” Composites Science and Technology, Vol. 69, (2009), pp.2002-2007.
32. R. B. Mathur, S. Chatterjee and B. P. Singh, “Growth of Carbon Nanotubes on Carbon Fiber Substrates to Produce Hybrid/Phenolic Composites with Improved Mechanical Properties,” Composites Science and Technology, Vol. 68, (2008), pp.1608-1615.
33. http://zhidao.baidu.com/question/8238250.html
34. http://www.che.yuntech.edu.tw/teacher/lincw/materials/chaptr%203.pdf
35. http://www.chinaccm.com/07/0707/070702/news/20060328/141820.asp
36. “常用的高分子基材,”
http://www.iaa.ncku.edu.tw/~young/pccl/chb3.html
37. N. Yu, Z. H. Zhang, S. Y. He, “Fracture Toughness and Fatigue Life of MWCNT/Epoxy Composites,” Materials Science and Engineering A, Vol. 494, (2008), pp.380-384.
38. C. S. Grimmer and C. K. H. Dharan, “High-Cycle Fatigue of Hybrid Carbon Nanotube/Glass Fiber/Polymer Composites,” Journal of Materials Science, Vol. 43, (2008), pp.4487-4492.
39. D. C. Davis, J. W. Wilkerson, J. Zhu and D. O. O. Ayewah, “Improvements in Mechanical Properties of a Carbon Fiber Epoxy Composite Using Nanotube Science and Technology.” Composite Structures, Vol.92, (2010), pp.2653-2662.
40. 蘇皇碩, “奈米碳管對碳/碳複合材料機械性質與物理性質之影響,” 國立清華大學動力機械工程學系碩士論文, (2010).
41. 王國書, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文, (2007).
42. “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” ASTM D790-10, (2010).
43. “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM D2344/D2344M-00, (2006).
44. “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials,” ASTM D3479/D3479M-06, (2007).
45. “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data,” ASTM E739-91, (2004).
46. “Temperature Cycling,” JESD22-A104B, JEDEC Solid State Technology Association, (2000).
47. A. T. Seyhan, M. Tanoglu and K. Schulte, “Tensile Mechanical Behavior and Fracture Toughness of MWCNT and DWCNT Modified Vinyl-Ester/Polyester Hybrid Nanocomposites Produced by 3-Roll Milling,” Materials Science and Engineering, Vol. 523, (2009), pp.85-92.
48. “An Introduction of Fundamental Epoxy Resins Applied on the Prepreg Technology,” 高值複材碳纖維產業交流會, (2009).
49. K. Q. Xiao, L. C. Zhang and I. Zarudi, “Mechanical and Rheological Properties of Carbon Nanotube- Reinforced Polyethylene Composites,” Composites Science and Technology, Vol. 67, (2007), pp.177-182.
50. C. Kong, T. Kim, D. Han and Y. Sugiyama, “Investigation of Fatigue Life for a Medium Scale Composite Wind Turbine Blade,” International Journal of Fatigue, Vol. 28, (2006), pp.1382-1388.
51. J. C. Marin, A. Barroso, F. Paris and J. Canas, “Study of Fatigue Damage in Wind Turbine Blades,” Engineering Failure Analysis, Vol. 16, (2009), pp.656-668.
52. M. Noda and R. G. J. Flay, “A Simulation Model for Wind Turbine Blade Fatigue Loads,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 83, (1999), pp.527-540.
53. P. Deglaire, S. Engblom, O. Agren and H. Bernhoff, “Analytical Solutions for a Single Blade in Vertical Axis Turbine Motion in Two-Dimensions,” European Journal of Mechanics B/Fluids, Vol. 28, (2009), pp.506-520.