研究生: |
呂曼綾 Lu, ManLing |
---|---|
論文名稱: |
以新型內置低感應天線高密度電漿輔助化學氣相沉積系統製備矽薄膜與SPA太陽能電池 Fabrication of Silicon Thin Films and SPA Solar Cell by ICP-CVD with Internal Low-Inductance Antenna |
指導教授: |
曾孝明
Tseng, Shiao-Min 黃惠良 Hwang, Huey-Liang |
口試委員: |
曾百亨
Tseng, Bae-Heng 阮弼群 Juan, Pi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | ICPCVD |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文中,主要目的為利用低電感高密度電漿與電漿輔助化學氣相沉積(LIA ICP-CVD)系統沉積出高品質的非晶與多晶矽薄膜來製作SPA結構薄膜太陽能電池。我們發現,氫稀釋98%,矽甲烷2 sccm,氫氣98 sccm可以得到較高結晶率的多晶矽薄膜,此外,製成前將基板置於高溫350℃真空環境中加熱30分鐘,也可有效的升高結晶率,目前得到最高結晶率的多晶矽薄膜為82.63 %,此為沉積於玻璃基板上的結果。加入磷化氫氣體製作n型摻雜多晶矽薄膜,目前可得最高電導為1.916 Ω-1-cm-1。將氫稀釋調低至77 %,再利用低功率1500W,低溫200℃的環境可製備出非晶矽薄膜,目前可得最高能隙為1.75 eV。加入乙硼烷氣體沉積p型摻雜非晶矽薄膜,目前可得最高能隙為1.705 eV,而電導為0.315 Ω-1-cm-1。SPA結構為一單一異質結,吸收層包含了多晶與非晶矽薄膜,利用品質較好的薄膜製備出SPA結構太陽能電池,若無經過任何後處理,目前可達最高轉換效率為2.4 %,若利用交通大學更高品質的p型非晶與本質非晶薄膜,轉換效率可達3.24%。
In this thesis, device quality amorphous silicon and polycrystalline silicon thin films were investigated for fabricating SPA solar cells by using ICP-CVD with internal low-inductance antenna (LIA). For polycrystalline silicon thin films, we observed that 98% of hydrogen dilution ratio with a SiH4 flow rate of 2 sccm and H2 flow rate of 98 sccm are suitable. Furthermore, higher power of 3000 W and higher temperature of 400℃ and 10mT process pressure increased the crystalline volume fraction Xc of poly-Si films. Annealing the substrates at 350℃ in vacuum chamber for 30 minutes before depositing the films also could enhance the quality of poly-Si film and the highest Xc obtained was 82.63% on the glass substrate. The highest conductivity of n-type poly-Si thin-film which was obtained with the doping gas PH3 diluted in 99% H2, was1.916 Ω-1-cm-1. Hydrogenated amorphous silicon films were fabricated by tuning the process parameters to lower power of 1500 W, lower temperature of 200℃, and lower hydrogen dilution of 77%, and the band gap obtained was 1.75 eV, and the Raman spectra of this film showed a peak at 480cm-1. In the case of p-type amorphous silicon thin films, the conductivity obtained was 0.315 Ω-1-cm-1. For the highest band gap of 1.705 eV with the doping gas B2H6 diluted in 99.5% H2. We fabricated the single heterojunction thin-film Si solar cell with poly-Si and a-Si:H absorber layers (SPA) and the highest efficiency of 2.4 % was obtained. After replacing the p-type amorphous layer and absorber amorphous layer with higher band gap deposited in NTCU, efficiency improved to 3.24 %.
References
[1] Ghittick R. C., Alexander J. H., Sterling H F. j, Electrochem Soc., 116: 77,
1969.
[2] P. E. Vanier, F. J. Kampas, R. R. Corderman, and G. Rajeswaran “A study of hydrogenated amorphous silicon deposited by rf glow discharge in silane‐hydrogen mixtures ”, J. Appl. Phys. 56, 1812 (1984)
[3] A. Matsuda and T. Goto, Mater. Res. Soc. Proc. 164 (1990) 3.
[4] J. Perrin, Y. Takeda, N. Hitano, Y. Takeuchi, and A. Matsuda, Surf. Sci. 210 (1989) 114.
[5] John Robertson. “Growth mechanism of hydrogenated amorphous silicon”, journal of non crystalline solids, 2000,266:79.
[6] B. Mehta and M. Tao. “A Kinetic Model for Boron and Phosphorus Doping in Silicon Epitaxy by CVD“, Journal of The Electrochemical Society, 152 (4) (2005)
[7] Guha S, in Street R, Ed, Technology and Applications of Amorphous Silicon, 252–305, Springer,Berlin (1999). Figure 6.10 of this paper is a valuable compilation of power measurements for varying cell thicknesses and light-soaking histories.
[8] Guha S, Yang J, Banerjee A, Glatfelter T, Hoffman K, Xu X, Technical Digest – 7th International Photovoltaic Science and Engineering Conference (PVSEC-7), 43 (Nagoya, Japan, 1993).
[9] P. Alpuim, V. Chu, and J. P. Conde , “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition”, J. Appl. Phys. 86, 3812 (1999).
[10] A. Matsuda ,” Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films 337 (1999).
[11 ] S. Veprek, Z. Iqbal, F.A. Sarott, Phil. Mag. B 45 137, 1982.
[12] Vetterl O, Finger F, Garius R etc., Sol Energy Mater Sol Cells, 62: 97, 2000.
[13]. Yamamoto K, Suzuki T, Yoshimi M, Nakaijima A, Jpn. J. Appl. Phys. 36, L569 (1997).
[14]. Yamamoto K et al., Proc. 26th IEEE Photovoltaic Specialists Conf., 575 (Anaheim, CA, 1997).
[15] AL & SH “Handbook of photovoltaic science and engineering”, December 2, 2002.