研究生: |
曾偉倫 Tseng Wei Lun |
---|---|
論文名稱: |
酵母菌對重金屬之耐性與吸收性研究 Studies on tolerance and absorption of heavy metal by yeasts |
指導教授: |
李清福 教授
Lee Ching Fu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 酵母菌 、重金屬 、重金屬吸收性 |
外文關鍵詞: | yeast, heavy metals, heavy metal absorption |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是想利用微生物處理方式,去處理大量低濃度的重金屬廢液。主要內容包括酵母菌株之篩選,最適培養基及培養條件之探討,以及重金屬吸收性之探討。本實驗自庫存菌株600餘株中,先選出於固態培養基中對鎘離子耐性較佳之株菌,再經液態培養對不同重金屬離子之耐性,經紫外光(Ultraviolet,UV)及可見光(Visible,Vis)分光光譜儀分析菌株生長狀況,篩選出Asterotremella meifongana SN4S04菌株。於不同培養基中加入各重金屬離子,測試A. meifongana SN4S04菌株,選出該菌株培養於YPD培養基中對重金屬離子之耐性最佳。經過試驗分析,其最適培養基成分和培養條件如下:以2%葡萄糖(glucose),0.5%蛋白腖(peptone),0.2%酵母抽出物(yeast extract),0.1%甘胺酸(glycine ),0.02%半胱胺酸(cysteine)及0.02%麩胺酸(glutamic Acid),所組成的YPX培養基對A. meifongana SN4S04菌株於重金屬離子中,以25℃溫度的震盪培養48小時後,菌株生長情形最佳。以此條件培養後之菌株,對低濃度之不同重金屬溶液的吸收情形,經感應耦合電漿光學發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometers,ICP-OES)分析,得知該菌株在水中每克可吸收銅離子3.64 mg、鋅離子5.48 mg、鎳離子4.73 mg、鎘離子3.85 mg、鉻離子0.36 mg;若是廢液中含有菌株可生長之培養基,其對不同重金屬離子的吸收比例有差異,經分析每克可吸收銅離子11.19 mg、鋅離子3.43 mg、鎳離子10.23 mg、鎘離子0.53 mg、鉻離子0.12 mg。從本實驗結果酵母菌經篩選,處理一些大量的重金屬廢液是可行的。
The objective of this study is to explore the bioremediation of contaminated river or soil with heavy metals by the absorption activity of yeasts. In this study, sixteen yeasts with high tolerance against heavy metal were selected from 600 yeast strains collected from soil, plants and mushrooms in our laboratory. Among the strains selected, Asterotremella meifongana SN4S04 grew better than other strains in YMB broth containing cadmium ions. The growth of the yeasts was deduced from turbidity of the cell suspension by spectrophotometer. The optimum growth conditions in YPD broth containing heavy metals for A. meifongana SN4S04 were examined. Test analysis, the optimum formulation of the medium (YPX) for the strain against heavy metals can be obtained as follows: 2% glucose , 0.5% peptone , 0.2% yeast extract , 0.1% glycine, 0.02% cysteine and 0.02% glutamic Acid. The strain can grow in the YPX broth containing different kinds of heavy metals as well as in broth containing no heavy metals at 25 oC for 48 hrs. The absorption ability of the cells of strain A. meifongana SN4S04 was analyzed by inductively coupled plasma optical emission spectroscopy ( ICP-OES). The amounts of heavy metals in water was absorbed by the cells were Cu2+ 3.64 mg, Zn2+ 5.48 mg, Ni2+ 4.73 mg, Cd2+ 3.85 mg, Cr6+ 0.36 mg, respectively. While, The amounts of heavy metals contained in water was absorbed by the cells harvested from cultured YPX broth were Cu2+ 10.55 mg, Zn2+ 3.85 mg, Ni2+ 12.96 mg, Cd2+ 1.24 mg, Cr6+ 0.14 mg, respectively. As the results, it is potential to perform the bioremediation of contaminated river and soil with yeast cells.
王明光、王敏昭著,實用儀器分析,國立編譯館,合記圖書出版社,p161-191,p277-312。
何佳幸、曾木金編譯,王惠鈞總校閱,2005,生化實驗:基礎操作原理與方法,偉明圖書有限公司,p15-26。
邱華賢、鄭信男、翁東霖等譯,2001,生物科技概論,學富文化事業有限公司。P168-173。
蘇遠志,1999,應用為生物學,國立編譯館,華香園出版社,p663-678。
林順富、陳師瑩、顏瑞鴻、蕭慧美編譯,葉東柏總校閱,2001,生物化學,偉明圖書有限公司,p73-79。
陳國誠、魏育群,1987,科學月刊雜誌:防治重金屬污染的藥方-生物處理。
陳尊賢,1998,科學月刊:讓受重金屬污染土壤重現生機,p389-393。
陳勝一,2009,工業污染防治:整合性硫生物循環於土壤重金屬污染整治之應用,經濟部工業局,第110期,p1-23。
楊磊,1996,科學月刊:溼地廢水處理之應用,p32-37。
李清福,1986,微生物尿酸氧化酵素之生產及其應用之研究,國立中興大學食品科學研究所碩士論文。
詹智遠,1990,環境微生物處理重金屬之研究,東華大學生物技術研究所。
葉銀田,2008,新竹主要河川、海濱溼地之重金屬平面縱深含量分布探討,國立新竹教育大學應用科學系碩士論文。
Barrett, J., M. N., Hughes, G. I. Karavaiko, and P. A. Spencer. 1993. Metal extraction by bacterial oxidation of minerals. In: Inorganic Chemistry (Burgess, E. H. J, Ed.),pp. 212-221. Ellis Horwood, Chichester.
Boishop, P. L. 2002. Pollution prevention: fundamentals and practice. Beijing:Tsinghua University Press; 2002.
Bosshard, P. P., R. Bachofen, and H. Brandl. 1996. Metal leaching of fly ash from municipal water incineration by Aspergerllus niger. Environ. Sci. Technol. 30:3066-3070.
Burgstaller, W. and F. Schinner. 1993. Leaching of metals with fungi. J. Biotechnol. 27:91-116.
Chang, C. Y., P. C. Chiang, Y. P. Chu, H. H. Hsiao, and L. L. Severinghaus. 1989. Taiwan 2000: Balancing economic growth and environmental protection. Academia Sinica, Taipei, Taiwan.
Ciba, J., T. Kolewicz, and M. Tueek, 1999. The occurrence of metals in composted municipal wastes and their removal, Water, Air and Soil Poll. 111:159-170.
Clemens, S. E. J. Kim, D. Neumann, and J. I. Schroeder. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMOJ. 18:3325-33.
Cobbett, C., P. Goldsbrough. 2002. Phytichelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53:159-82.
Cornelissen, S. A. Botha, W. J. Conradie, and G. M. Wolfaardt. 2003. Shifts in community composition provide a mechanism for maintenance of activity of soil yeast in presence of elevated copper levels. Can. J. Microbiol. 49:425-432.
Davis, T. A., B. Volesky, and A. Mucci. 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37:4311-30.
Encinas, J. P. T. M. Lopez-Diaz, M. L. Garcia-Lopez, A. Otero, and B. Moreno. 2000. Meat Sci. 54:203-208.
Gavrilesca, M. 2004. Removal of heavy metals from the environmental by biosorption. Eng Life Sci. 4:219-32.
Gonzalez-Toril, E. F. Go’mez, N. Rodri’guez, D. Ferna’ndez-Remolar. J. Zuluaga, I. Mari’n, and R. Amils. 2003.Geomicrobiology of the Tinto River, a model of interest for biohydrometallurgy. Hydrometallurgy. 71:301-309.
Grill, E. S. Loffler, E-L. Winnacker, M. H. Zenk. 1989. Phytochelatins, the heavymetal binding peptides of plant, are synthesized from glutathione by specific-glutamylcysteine dipeptidyl transpeptidase(phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86:6838-42.
Ha, S-B., A. P. Smith, R. Howden, W. M. Dietrich, S. Bugg. et al. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153-64.
Harrison, J. J. M. Rabiei, R. J. Turner, E. A. Badry,K.M. Sproule and H. Ceri. 2006. Metal resistance in Candida biofilms. FEMS Microbiol.Ccol. 55:479-491.
Kaim W. and Schwederski B. 1994 Bioinorganic Chemistry: Inorganic Elements in Chemistry of Life. John Wiley & Sons,Chichester.
Kapoor, A, and T. Viraraghavan. 1995. Fungi biosorption-an alternative treatment option for heavy metal bearing wastewater: a review. Bioresour Technol. 53:195-206.
Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16(7):291-300.
Krebs, W., C. Brombacher, and P. P. Bosshard, R. Bachofen, and H. Brandl. 1997. Microbial recovery of metals from solids. FEMS Microbiology Reviews 20:605-617.
Ksheminskal, H., A. Jaglarz, D. Fedorovychl, L. Babyakl, D. Yanovychl, P. Kaszycki, H. Koloczek. 2003. Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr(III) and Cr(VI) and the influence of riboflavin on Cr tolerance. Microbiol. Res. 158:59-67.
Ksheminskaa, H., D. Fedorovycha, L. Babyaka, D. Yanovycha, P. Kaszyckib, and H. Koloczekb. 2005. Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochemistry 40:1565-1572.
Lane, B.G., R. Kajioka, T. D. Kennedy. 1987. The wheat germ Ec protein is a zinccontaining metallothionein. Biochem. Cell. Biol. 65:1001-5.
Liu C. F. Young S. S., Chang T. C. and Lee C. F., 2008. Candida dajiaensis sp. nov., Candida yuanshanicus sp. nov., Candida jianshihensis sp.nov., Candida sanyiensis sp. nov., four anamorphic, ascomycetous yeast species isolated from soil in Taiwan. FEMS Yeast Research, 8(5):815-822.
Malik, A. 2004. Metal biormediation through growing cells. Environ. Int. 30:261-78.
Morselt, A. F. W. 1991 Environmental pollutants and diseases. A cell biological approach using chronic cadmium exposure in the animal model as a aradigm case. Toxicology, 70,1-132.
Muller, B., W. Burgstaller, H. Strasser, A. Zanella, and F. Schinner. 1995. Leaching of zine from industrial filter dust with Penicillium, Pseudomonas and Corynebacterium – Citric acid is the leaching agent rather than amino acids. J. Ind. Microbiol. 14:208-212.
Olson, G. J. 1994. Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiol. Lett. 119:1-6.
Ortiz, D. F., L. Kreppel, D. M. Speiser, G. Scheel, G. Mcdonald, and D. W. Ow. 1992. Heavymetal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBOJ. 11:3491-99.
Ortiz, D. F., T. Ruscitti,K. F. Maccue, and D. W. Ow. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol.Chem. 270:4721-28.
Peregol, P., S. B. Howell. 1997. Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol. 147:312-8.
Ramirez-Ramirez, R., C. Calvo-Mendez, M. Avila-Rodriguez, P. Lappe, M. Ulloa, R. Vazquez-Juarez, and J. F. Ant. Van Leeuwenhoek. 85:63-68.
Rauser, W. E. 1995. Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol. 109:1141-49.
Rossi, G. 1990. Biohydrometallurgy. McGraw-Hill, Hamburg.
Salinas, E., M. E. de Orellano, I. Rezza, L. Martinez, E. Marchesvky, M. S. de Tosetti. 2002. Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresource Technology 72:107-112.
Schaefer, Z. and Lapis K. 1990 Fine structure of hepatocytes during the etiology of several common pathologies. Journal of Electron Microscopy Techniques 14:179-207.
Siloniz, M. I., L. Balsalobre, C. Alba, M. J. Valderrama and J. M. Peinado. 2002.Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Research in Microbiology 153:173-180.
Siloniz, M., C. Balsolobre, M. Valderrama, and J. Peinado. 2002. Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res. Microbiol 153:173-180.
Smith, D., Y. Yanai, Y. G. Liu, S. Ishiguro, and K. Okada et al., 1996. Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J. 10:721-32.
Strasser, H. W. Burgstaller, and F. Schinner. 1994. High yield production of oxalic acid for metal leaching processes by Aepergillus niger. FEMS Microbiol. Lett. 119:365-370.
Tsezos, M. 2001. Biosorption of metals. The experience accumulated and outlook for technology development. Hydrometallurgy 59:241-3.
Vadkertiova, R., E. Slavikova. 2006. Metal tolerance of yeasts isolated from water, soil and plant environment. Journal of Basic Microbiology. 46(2):145-152.
Vatamaniuk, O. K., S. Mari, Y-P. Lu, P. A. Rea. 1999. AtPCSl, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA 96:7110-15.
Vatamaniuk, O. K., S. Mari, Y-P. Lu, P. A. Rea. 2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase-blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem. 275:3151-59.
Veglio, F., and F. Beolchini. 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 1997,44:301-16.
Volesky B., and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol Prog. 11:235-50.
Volesky B., 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy. 59:203-16.
Wang, J. and C. Chen. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances. 24:427-451.
White C, and G. M. Gadd. 1995. Determination of metals and metal fluxes in algae and fungi. Sci. Total Environ. 176:107-15.
Yarrow D. 1998. Methods for the isolation, maintenance and identification of yeasts. The Yeasts, A taxonomic Study, 4th edn(Kurtzman CP and Fell JW eds), pp. 77-102. Elsevier, Amsterdam.