簡易檢索 / 詳目顯示

研究生: 蔡億泰
Tsai, I-Tai
論文名稱: 含鉭焦綠石奈米顆粒的成分調控與其於光催化水分解之研究
Tantalum-based Pyrochlore Nanoparticles with Components Controlling for Photocatalytic Water Splitting
指導教授: 楊家銘
Yang, Chia-Min
口試委員: 鄭淑芬
Cheng, Soo-Fin
張淑閔
Chang, Sue-Min
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 焦綠石鉭酸鹽過氧化氫光觸媒光催化水分解
外文關鍵詞: Pyrochlore, Tantalate, Hydrogen percxide, Photocatalyst, Photocatalytic water splitting
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對先前實驗室開發之高結晶性單相含鉭焦綠石奈米顆粒進
    行成分上的調控。在合成過程中透過調整含鈮前驅物與含鉭前驅物
    之間的比例,可合成出不同比例的鈮鉭混和焦綠石,並且在UV-Vis
    吸收光譜可以看到隨鈮含量的增加,吸收波段有紅位移的現象,其
    中合成液鈮鉭前驅物莫耳比為1:1 的樣品負載銀之後能夠在300 奈
    米波長以上的光照下,有純水分解產氫及過氧化氫的能力,並且在
    全光照射下能維持與純鉭焦綠石相似的活性。此外,利用氨氣環境
    下熱處理的方法,在不同溫度下得到具有氧空缺及結構缺陷的含鉭
    焦綠石,並且300 oC 熱處理下的樣品,在300 奈米以上波長光源照
    射下同樣有純水分解產氫及過氧化氫之能力。


    In this thesis, highly crystalline tantalum-based pyrochlore nanoparticles were synthesized by microwave assisted hydrothermal
    process. We tried to control the component of tantalum-based pyrochlore by two ways. First, niobium-based precursor was added in synthesis solution of tantalum-based pyrochlore system in microwave process. Among different amounts of niobium-based precursor adding, we found that the sample with molar ratio 1:1 of niobium and tantalum showed the best activity of H2 evolution in pure water than the samples with the other ratio under over 300 nm light irradiation. In addition, hydrogen peroxide was also detected in solution like tantalum-based pyrochlore. Second, we did the thermal treatment for tantalum-based pyrochlore under NH3 gas flow. We found that the sample which was treated under 300 oC kept the activity like the sample without thermal treatment, and showed the activity
    of H2 evolution and hydrogen peroxide production in pure water under over 300 nm light irradiation.

    摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 光催化水分解製氫 1 1-1-1 光催化水全分解 3 1-1-2 光催化水分解產過氧化氫 7 1-2 半導體光觸媒10 1-2-1 金屬氧化物13 1-2-2 金屬氮化物/ 氮氧化物14 1-3 光催化性質調整15 1-3-1 顆粒大小及結晶性16 1-3-2 負載金屬共催化劑18 1-3-3 改變能帶性質21 1-4 具焦綠石結構之金屬氧化物23 IV 1-4-1 焦綠石結構與特性23 1-4-2 焦綠石於光催化應用25 1-5 研究動機27 第二章 實驗部分 29 2-1 實驗藥品29 2-2 樣品合成30 2-2-1 含鉭焦綠石前驅物樣品合成30 2-2-2 含鉭焦綠石樣品合成31 2-2-3 含鈮鉭焦綠石前驅物樣品合成31 2-2-4 含鈮鉭焦綠石樣品合成32 2-2-5 負載銀之含鉭/ 鈮鉭焦綠石樣品合成32 2-2-6 含鉭/ 鈮鉭焦綠石合成後熱處理樣品合成33 2-3 光催化反應研究34 2-4 樣品命名37 2-5 材料鑑定與分析39 2-5-1 X 光粉末繞射(Powder X-Ray Diffraction, PXRD)39 2-5-2 掃描式電子顯微術(Scanning Electron Microscopy, SEM) 40 2-5-3 穿透式電子顯微術(Transmission Electron Microscopy, TEM) 41 V 2-5-4 紫外/可見光吸收光譜(UV-Visible Spectroscopy, UVVis) 42 2-5-5 高解析X 光光電子能譜(High Resolution X-ray Photoelectron Spectroscopy, HR-XPS) 43 2-5-6 熱重量分析(Thermo Gravimetric Analysis, TGA) 44 第三章 結果與討論 45 3-1 以微波合成法製備鈮鉭焦綠石樣品45 3-1-1 不同比例鈮鉭焦綠石研究46 3-1-2 合成鹼度及溫度對樣品結構、性質之影響52 3-2 鈮鉭焦綠石光催化純水分解之研究54 3-2-1 不同比例鈮鉭焦綠石催化結果比較54 3-2-2 附載銀離子之催化活性差異57 3-3 氨根離子交換焦綠石經熱處理之結果探討58 3-3-1 TP-H0-N01 熱處理結果探討59 3-3-2 TP-Hx-N01 熱處理結果探討62 3-3-3 NTP-Hx-N01 熱處理結果探討65 3-3-4 N/TP-Hx-N01 熱處理後於光催化水分解之活性69 3-4 純鉭焦綠石於氨氣環境下熱處理之結果探討69 3-4-1 N/TP-NH3-x 結果探討70 3-4-2 N/TP-Ag+-NH3-x 結果探討80 VI 3-4-3 N/TP-KNO3-NH3-x 結果探討82 3-4-4 氨氣環境下熱處理之樣品活性85 第四章 結論89 第五章 參考論文 91

    [1] Hosseini, S. E., Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable Sustainable Energy Rev. 2016, 57, 850-866.
    [2] Chu, S., Cui, Y., Liu, N., The path towards sustainable energy. Nat Mater 2016, 16, 16-22.
    [3] Chen, S. S., Takata, T., Domen, K., Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2.
    [4] Zhang, Y. F., Heo, Y. J., Lee, J. W., Lee, J. H., Bajgai, J., Lee, K. J., Park, S. J., Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review. Catalysts 2018, 8.
    [5] Kudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009, 38, 253-78.
    [6] Fajrina, N., Tahir, M., A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 2019, 44, 540-577.
    [7] Reza Gholipour, M., Dinh, C. T., Beland, F., Do, T. O., Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187-208.
    [8] Hisatomi, T., Domen, K., Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis 2019, 2, 387-399.
    [9] Maeda, K., Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol., C 2011, 12, 237-268.
    [10] Li, J., Wu, N., Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 2015, 5, 1360-1384.
    [11] Chen, S., Takata, T., Domen, K., Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2.
    [12] Rozhkova, E. A. A., K., From Molecules to Materials: Pathways to Artificial Photosynthesis. Springier: 2015.
    [13] Peng, Y. K., Tsang, S. C. E., Facet-dependent photocatalysis of nanosize semiconductive metal oxides and progress of their characterization. Nano Today 2018, 18, 15-34.
    [14] Liu, Y., Mishra, M., Chen, Y.-H., Perng, T.-P., On the processes of photo-induced hydrogen generation from methanol solution by Ta3N5 and WO3. Int. J. Hydrogen Energy 2018, 43, 23255-23261.
    [15] Xiaobo Chen, S. S., Liejin Guo, and Samuel S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chem Rev 2010, 110, 6503-6570.
    [16] Serrano, E., Rus, G., Garcia-Martinez, J., Nanotechnology for sustainable energy. Renew. Sust. Energ. Rev. 2009, 13, 2373-2384.
    [17] Ohtani, B., Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol., C 2010, 11, 157-178.
    [18] Tsukamoto, D., Shiro, A., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., Hirai, T., Photocatalytic H2O2 Production from Ethanol/O2 System Using TiO2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS Catalysis 2012, 2, 599-603.
    [19] Wakana Kubo , T. T., Mechanisms of Photocatalytic Remote Oxidation. J. Am. Chem. Soc. 2006, 128, 16034-16035.
    [20] Burek, B. O., Bahnemann, D. W., Bloh, J. Z., Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide. Acs Catalysis 2019, 9, 25-37.
    [21] Wang, L. C., Cao, S., Guo, K., Wu, Z. J., Ma, Z., Piao, L. Y., Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin. J. Catal. 2019, 40, 470-475.
    [22] Fu, Y. J., Liu, C. A., Zhang, M. L., Zhu, C., Li, H., Wang, H. B., Song, Y. X., Huang, H., Liu, Y., Kang, Z. H., Photocatalytic H2O2 and H-2 Generation from Living Chlorella vulgaris and Carbon Micro Particle Comodified g-C3N4. Adv. Energy Mater. 2018, 8, 9.
    [23] Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S., Hirai, T., Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light. Acs Catalysis 2014, 4, 774-780.
    [24] Tomita, O., Otsubo, T., Higashi, M., Ohtani, B., Abe, R., Partial Oxidation of Alcohols on Visible-Light-Responsive WO3 Photocatalysts Loaded with Palladium Oxide Cocatalyst. Acs Catalysis 2016, 6, 1134-1144.
    [25] Highfield, J., Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and Chemicals. Molecules 2015, 20, 6739-6793.
    [26] Viswanathan, V., Hansen, H. A., Norskov, J. K., Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation. J. Phys. Chem. Lett. 2015, 6, 4224-4228.
    [27] Viswanathan, V., Hansen, H. A., Rossmeisl, J., Norskov, J. K., Unifying the 2e(-) and 4e(-) Reduction of Oxygen on Metal Surfaces. J. Phys. Chem. Lett. 2012, 3, 2948-2951.
    [28] Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M., Deiana, D., Malacrida, P., Wickman, B., Escudero-Escribano, M., Paoli, E. A., Frydendal, R., Hansen, T. W., Chorkendorff, I., Stephens, I. E. L., Rossmeisl, J., Enabling direct H2O2 production through rational electrocatalyst design (vol 12, pg 1137, 2013). Nat. Mater. 2014, 13, 213-213.
    [29] Hansen, H. A., Viswanathan, V., Norskov, J. K., Unifying Kinetic and Thermodynamic Analysis of 2 e(-) and 4 e(-) Reduction of Oxygen on Metal Surfaces. J. Phys. Chem. C 2014, 118, 6706-6718.
    [30] Compton, O. C., Osterloh, F. E., Niobate Nanosheets as Catalysts for Photochemical Water Splitting into Hydrogen and Hydrogen Peroxide. J. Phys. Chem. C 2009, 113, 479-485.
    [31] Daskalaki, V. M., Panagiotopoulou, P., Kondarides, D. I., Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chem. Eng. J. 2011, 170, 433-439.
    [32] Yesodharan, E., Yesodharan, S., Gratzel, M., Photolysis of water with supported noble-metal clusters, the fate of oxygen in titania based water cleavages systems. Sol. Energy Mater. 1984, 10, 287-302.
    [33] Hu, C.-C., Yeh, T.-F., Teng, H., Pyrochlore-like K2Ta2O6 synthesized from different methods as efficient photocatalysts for water splitting. Catal. Sci. Technol. 2013, 3.
    [34] Fu, Y. S., Li, J., Li, J., Metal/Semiconductor Nanocomposites for Photocatalysis: Fundamentals, Structures, Applications and Properties. Nanomaterials (Basel) 2019, 9.
    [35] Akihiko Kudo, A. T., Kazunari Domen, Ken-Ichi Maruya,, Ken-Ichi Aika, a. T. O., Photocatalytic Decopmposition of Water over NiO-K4Nb6O17 Catalyst. J. Catal. 1998, 111, 67-76.
    [36] Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi, A. A., Heterojunction Photocatalysts. Adv Mater 2017, 29.
    [37] Jian, J., Jiang, G., van de Krol, R., Wei, B., Wang, H., Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 2018, 51, 457-480.
    [38] Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., Chen, X., Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485-2534.
    [39] Ola, O., Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol., C 2015, 24, 16-42.
    [40] Wang, Z., Inoue, Y., Hisatomi, T., Ishikawa, R., Wang, Q., Takata, T., Chen, S. S., Shibata, N., Ikuhara, Y., Domen, K., Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nature Catalysis 2018, 1, 756-763.
    [41] Krukowska, A., Trykowski, G., Lisowski, W., Klimczuk, T., Winiarski, M. J., Zaleska-Medynska, A., Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H-2 generation. Journal of Catalysis 2018, 364, 371-381.
    [42] Ishihara, T., Nishiguchi, H., Fukamachi, K., Takita, Y., Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. J. Phys. Chem. B 1999, 103, 1-3.
    [43] Yu, J. X., Chen, Z. G., Zeng, L., Ma, Y. Y., Feng, Z., Wu, Y., Lin, H. J., Zhao, L. H., He, Y. M., Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 2018, 179, 45-56.
    [44] Lan, J. Y., Zhou, X. M., Liu, G., Yu, J. G., Zhang, J. C., Zhi, L. J., Nie, G. J., Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light. Nanoscale 2011, 3, 5161-5167.
    [45] Stokowski, H., Janicki, L., Serafinczuk, J., Siekacz, M., Skierbiszewski, C., Kudrawiec, R., Depletion Layer Built-In Field at (1-100), (0001), and (000-1) GaN/Water Junction and Its Role in Semiconductor Nanowire Water Splitting. Adv. Mater. Interfaces 2019, 6, 9.
    [46] Xi, X., Yang, C., Cao, H. C., Yu, Z. G., Li, J., Lin, S., Ma, Z. H., Zhao, L. X., GaN nanocolumns fabricated by self-assembly Ni mask and its enhanced photocatalytic performance in water splitting. Appl. Surf. Sci. 2018, 462, 310-315.
    [47] Maeda, K., Lu, D. L., Domen, K., Direct Water Splitting into Hydrogen and Oxygen under Visible Light by using Modified TaON Photocatalysts with d(0) Electronic Configuration. Chem.-Eur. J. 2013, 19, 4986-4991.
    [48] Hitoki, G., Takata, T., Kondo, J. N., Hara, M., Kobayashi, H., Domen, K., An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda <= 500 nm). Chem. Commun. 2002, 1698-1699.
    [49] Ge, M. Z., Li, Q. S., Cao, C. Y., Huang, J. Y., Li, S. H., Zhang, S. N., Chen, Z., Zhang, K. Q., Al-Deyab, S. S., Lai, Y. K., One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting. Adv. Sci. 2017, 4, 31.
    [50] Fujishima, A., Zhang, X., Tryk, D., TiO2 photocatalysis and related surface phenomena. Surface Science Reports 2008, 63, 515-582.
    [51] Fan, W. Q., Zhang, Q. H., Wang, Y., Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 2013, 15, 2632-2649.
    [52] Kato, H., Kudo, A., Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal. Today 2003, 78, 561-569.
    [53] Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., Maruya, K., Onishi, T., Nickel-loaded K4NB6O17 photocatalyst in the decomposition of H2O into H2 and O2 strucrure and reaction mechanism. Journal of Catalysis 1989, 120, 337-352.
    [54] Nunes, B. N., Haisch, C., Emeline, A. V., Bahnemann, D. W., Patrocinio, A. O. T., Photocatalytic properties of layer-by-layer thin films of hexaniobate nanoscrolls. Catal. Today 2019, 326, 60-67.
    [55] Wen, P. H., Ai, L. L., Wei, F. Y., Hu, D. W., Guo, J. J., Yao, F. Y., Liu, T. T., In-situ synthesis of crystalline Ag-Nb2O5 nanobelt clusters with enhanced solar photo-electrochemical performance for splitting water. Mater. Des. 2017, 131, 219-225.
    [56] Xiao, M., Wang, Z. L., Luo, B., Wang, S. C., Wang, L. Z., Enhancing photocatalytic activity of tantalum nitride by rational suppression of bulk, interface and surface charge recombination. Appl. Catal. B-Environ. 2019, 246, 195-201.
    [57] Asahi, R., Morikawa, T., Irie, H., Ohwaki, T., Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 2014, 114, 9824-52.
    [58] Mukherji, A., Sun, C., Smith, S. C., Lu, G. Q., Wang, L., Photocatalytic Hydrogen Production from Water Using N-Doped Ba5Ta4O15 under Solar Irradiation. The Journal of Physical Chemistry C 2011, 115, 15674-15678.
    [59] Zhou, Y., Wen, T., Kong, W., Yang, B., Wang, Y., The impact of nitrogen doping and reduced-niobium self-doping on the photocatalytic activity of ultra-thin Nb3O8(-) nanosheets. Dalton Trans 2017, 46, 13854-13861.
    [60] Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H., Domen, K., GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286-8287.
    [61] Boufatah, M. R., Merad, A. E., Structural stability, elastic and electronic properties of zincblende (GaN)(1)/(ZnO)(1) superlattice: Modified Becke-Johnson exchange potential. Mater. Sci. Semicond. Process 2014, 19, 179-185.
    [62] Lee, Y. G., Teramura, K., Hara, M., Domen, K., Modification of (Zn1+xGe)(N2Ox) solid solution as a visible light driven photocatalyst for overall water splitting. Chemistry of Materials 2007, 19, 2120-2127.
    [63] Yoshida, M., Maeda, K., Lu, D. L., Kubota, J., Domen, K., Lanthanoid Oxide Layers on Rhodium-Loaded (Ga1-xZnx)(N1-xOx) Photocatalyst as a Modifier for Overall Water Splitting under Visible-Light Irradiation. J. Phys. Chem. C 2013, 117, 14000-14006.
    [64] Hosogi, Y., Kato, H., Kudo, A., Photocatalytic Activities of Layered Titanates and Niobates Ion-Exchanged with Sn2+ under Visible Light Irradiation. J. Phys. Chem. C 2008, 112, 17678-17682.
    [65] Yang, G., Park, S. J., Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials 2019, 12, 18.
    [66] Osterloh, F. E., Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320.
    [67] Marcus, R. A., Chemical + electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 1964, 15, 155-&.
    [68] Bazant, M. Z., Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics. Accounts Chem. Res. 2013, 46, 1144-1160.
    [69] Chen, X. B., Liu, L., Yu, P. Y., Mao, S. S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746-750.
    [70] Xiong, L. B., Li, J. L., Yang, B., Yu, Y., Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012, 13.
    [71] Kou, J., Lu, C., Wang, J., Chen, Y., Xu, Z., Varma, R. S., Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chem Rev 2017, 117, 1445-1514.
    [72] Ran, J. R., Zhang, J., Yu, J. G., Jaroniec, M., Qiao, S. Z., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.
    [73] Tanaka, A., Sakaguchi, S., Hashimoto, K., Kominami, H., Preparation of Au/TiO2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. Acs Catalysis 2013, 3, 79-85.
    [74] Hisatomi, T., Takanabe, K., Domen, K., Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives. Catal. Lett. 2015, 145, 95-108.
    [75] Domen, K., Naito, S., Soma, M., Onishi, T., Tamaru, K., Photocatalytic decomposition of water-vapor on an NiO-SrTiO3 catalyst. J. Chem. Soc.-Chem. Commun. 1980, 543-544.
    [76] Domen, K., Kudo, A., Onishi, T., Kosugi, N., Kuroda, H., Photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3 powder .1. structure of the catalyst. J. Phys. Chem. 1986, 90, 292-295.
    [77] Wang, D. A., Hisatomi, T., Takata, T., Pan, C. S., Katayama, M., Kubota, J., Domen, K., Core/Shell Photocatalyst with Spatially Separated Co-Catalysts for Efficient Reduction and Oxidation of Water. Angew. Chem.-Int. Edit. 2013, 52, 11252-11256.
    [78] Zhang, J., Nosaka, Y., Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO2 Photocatalysts in Aqueous Suspension. J. Phys. Chem. C 2013, 117, 1383-1391.
    [79] Ni, M., Leung, M. K. H., Leung, D. Y. C., Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 2007, 11, 401-425.
    [80] Nosaka, Y., Nishikawa, M., Nosaka, A. Y., Spectroscopic Investigation of the Mechanism of Photocatalysis. Molecules 2014, 19, 18248-18267.
    [81] Yu, H., Irie, H., Shimodaira, Y., Hosogi, Y., Kuroda, Y., Miyauchi, M., Hashimoto, K., An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO2 Photocatalyst. J. Phys. Chem. C 2010, 114, 16481-16487.
    [82] Bloh, J. Z., Dillert, R., Bahnemann, D. W., Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Phys. Chem. Chem. Phys. 2014, 16, 5833-5845.
    [83] Wang, B. C., Kanhere, P. D., Chen, Z., Nisar, J., Pathak, B., Ahuja, R., Anion-Doped NaTaO3 for Visible Light Photocatalysis. J. Phys. Chem. C 2013, 117, 22518-22524.
    [84] Cleave, A. R., Atomic scale simulations for waste form applications. Cleave, A. R. Atomic scale simulations for waste form applications. Department of Materials, Imperial College London, 2006: 2006.
    [85] Gunn, D. S. D., Allan, N. L., Foxhall, H., Harding, J. H., Purton, J. A., Smith, W., Stein, M. J., Todorov, I. T., Travis, K. P., Novel potentials for modelling defect formation and oxygen vacancy migration in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. Journal of Materials Chemistry 2012, 22, 4675-4680.
    [86] Ravi, G., Kumar, K. S., Guje, R., Sreenu, K., Prasad, G., Vithal, M., Synthesis, characterization, luminescence and electrical conductivity of the metal ions (M) doped KAl0.33W1.67O6. Journal of Solid State Chemistry 2016, 233, 342-351.
    [87] Jitta, R. R., Gundeboina, R., Veldurthi, N. K., Guje, R., Muga, V., Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications - a review. Journal of Chemical Technology & Biotechnology 2015, 90, 1937-1948.
    [88] Subramanian, M. A., Aravamudan, G., Rao, G. V. S., OXIDE PYROCHLORES - A REVIEW. Progress in Solid State Chemistry 1983, 15, 55-143.
    [89] Uma, S., Singh, J., Thakral, V., Facile Room Temperature Ion-Exchange Synthesis of Sn2+ Incorporated Pyrochlore-Type Oxides and Their Photocatalytic Activities. Inorganic Chemistry 2009, 48, 11624-11630.
    [90] Zhang, G., Jiang, W., Yu, S., Preparation, characterization and photocatalytic property of nanosized K–Ta mixed oxides via a sol–gel method. Materials Research Bulletin 2010, 45, 1741-1747.
    [91] Hsieh, M. C., Wu, G. C., Liu, W. G., Goddard, W. A., Yang, C. M., Nanocomposites of Tantalum-Based Pyrochlore and Indium Hydroxide Showing High and Stable Photocatalytic Activities for Overall Water Splitting and Carbon Dioxide Reduction. Angew. Chem.-Int. Edit. 2014, 53, 14216-14220.
    [92] Murugesan, S., Huda, M. N., Yan, Y. F., Al-Jassim, M. M., Subramanian, V., Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. J. Phys. Chem. C 2010, 114, 10598-10605.
    [93] Zhang, G. K., Jiang, W., Yu, S. J., Preparation, characterization and photocatalytic property of nanosized K-Ta mixed oxides via a sol-gel method. Materials Research Bulletin 2010, 45, 1741-1747.
    [94] Xu, D. B., Liu, K. L., Shi, W. D., Chen, M., Luo, B. F., Xiao, L. S., Gu, W., Ag-decorated K2Ta2O6 nanocomposite photocatalysts with enhanced visible-light-driven degradation activities of tetracycline (TC). Ceramics International 2015, 41, 4444-4451.
    [95] Yang, H. H., Liu, X. R., Zhou, Z. H., Guo, L. J., Preparation of a novel Cd2Ta2O7 photocatalyst and its photocatalytic activity in water splitting. Catalysis Communications 2013, 31, 71-75.
    [96] Nyman, M., Rodriguez, M. A., Shea-Rohwer, L. E., Martin, J. E., Provencio, P. P., Highly Versatile Rare Earth Tantalate Pyrochlore Nanophosphors. J. Am. Chem. Soc. 2009, 131, 11652-+.
    [97] Fielitz, P., Borchardt, G., Ganschow, S., Bertram, R., Jackson, R. A., Fritze, H., Becker, K. D., Tantalum and niobium diffusion in single crystalline lithium niobate. Solid State Ionics 2014, 259, 14-20.
    [98] Sun, J., Yang, D., Sun, C., Liu, L., Yang, S., Alec Jia, Y., Cai, R., Yao, X., Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water. Sci Rep 2014, 4, 7313.
    [99] Anderson, T. M., Rodriguez, M. A., Bonhomme, F., Bixler, J. N., Alam, T. M., Nyman, M., An aqueous route to [Ta6O19]8- and solid-state studies of isostructural niobium and tantalum oxide complexes. Dalton Trans 2007, 4517-22.
    [100] Fullmer, L. B., Molina, P. I., Antonio, M. R., Nyman, M., Contrasting ion-association behaviour of Ta and Nb polyoxometalates. Dalton Trans 2014, 43, 15295-9.
    [101] Thanh, N. T., Maclean, N., Mahiddine, S., Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 2014, 114, 7610-30.
    [102] Brunckova, H., Kanuchova, M., Kolev, H., Mudra, E., Medvecky, L., XPS characterization of SmNbO4 and SmTaO4 precursors prepared by sol-gel method. Applied Surface Science 2019, 473, 1-5.
    [103] Zhang, Z. G., Abe, T., Moriyoshi, C., Tanaka, H., Kuroiwa, Y., Study of materials structure physics of isomorphic LiNbO3 and LiTaO3 ferroelectrics by synchrotron radiation X-ray diffraction. Japanese Journal of Applied Physics 2018, 57, 5.
    [104] Jang, Y. H., Jang, Y. J., Kim, S., Quan, L. N., Chung, K., Kim, D. H., Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem Rev 2016, 116, 14982-15034.
    [105] Li, X. Z., Chen, C. C., Zhao, J. C., Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118-4122.
    [106] Rao, M. P., Nandhini, V. P., Wu, J. J., Syed, A., Ameen, F., Anandan, S., Synthesis of N-doped potassium tantalate perovskite material for environmental applications. J. Solid State Chem. 2018, 258, 647-655.
    [107] Zhu, S., Fu, H., Zhang, S., Zhang, L., Zhu, Y., Two-step synthesis of a novel visible-light-driven K2Ta2O6−xNx catalyst for the pollutant decomposition. J. Photochem. Photobiol., A 2008, 193, 33-41.
    [108] Suzuki, H., Tomita, O., Higashi, M., Nakada, A., Abe, R., Improved visible-light activity of nitrogen-doped layered niobate photocatalysts by NH3-nitridation with KCl flux. Appl. Catal., B 2018, 232, 49-54.
    [109] Zlotnik, S., Sahu, S. K., Navrotsky, A., Vilarinho, P. M., Pyrochlore and Perovskite Potassium Tantalate: Enthalpies of Formation and Phase Transformation. Chem.-Eur. J. 2015, 21, 5231-5237.
    [110] Prasanna, R., Gold-Parker, A., Leijtens, T., Conings, B., Babayigit, A., Boyen, H. G., Toney, M. F., McGehee, M. D., Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. J. Am. Chem. Soc. 2017, 139, 11117-11124.
    [111] Ansari, S. A., Khan, M. M., Ansaric, M. O., Cho, M. H., Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000-3009.
    [112] Di Valentin, C., Pacchioni, G., Spectroscopic Properties of Doped and Defective Semiconducting Oxides from Hybrid Density Functional Calculations. Accounts Chem. Res. 2014, 47, 3233-3241.
    [113] Zong, X., Sun, C. H., Chen, Z. G., Mukherji, A., Wu, H., Zou, J., Smith, S. C., Lu, G. Q., Wang, L. Z., Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chem. Commun. 2011, 47, 6293-6295.
    [114] Laguta, V. V., Glinchuk, M. D., Bykov, I. P., Cremona, A., Galinetto, P., Giulotto, E., Jastrabik, L., Rosa, J., Light-induced defects in KTaO3. J. Appl. Phys. 2003, 93, 6056-6064.
    [115] Sarkar, A., Khan, G. G., The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11, 3414-3444.

    QR CODE