研究生: |
陳彥瑋 Yen-Wei Chen |
---|---|
論文名稱: |
以丙氨酸替換突變法分析綠豆液泡膜焦磷酸水解酶C端胺基酸所扮演的角色 Determination of C-terminal Region in Mungbean Vacuolar H+-pyrophosphatase by Alanine-substituted Mutagenesis |
指導教授: |
潘榮隆
Rong-Long Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 綠豆 、液泡膜 、焦磷酸水解酶 、丙氨酸替換突變法 |
外文關鍵詞: | Mungbean, vacuolar membrane, H+-pyrophosphatase, alanine-substituted mutagenesis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液泡焦磷酸水解酶 (簡稱 V-PPase; EC 3.6.1.1) 是一個同雙次體(homodimer)的氫質子轉送酶,具有維持膜內外氫離子濃度梯度的能力,是由一個約80kDa 的多肽鏈組成。許多的結果證明V-PPase 的C 端在許多高等植物中具有較高的同源性且靠近酵素活性催化位置。然而,C 端的真正功能尚未清楚。之前的實驗利用C端切除研究,發現當切除最後5個胺基酸時酵素會明顯地消失活性,但是再額外移除5個胺基酸時,酵素活性卻又恢復至野生株活性的60-70%左右。所以在這次實驗中,我們利用胺基酸定點突變法逐一檢驗V-PPase C端胺基酸的結構及特性。我們的實驗結果顯示 F755A, G759A, F763A, I765A 的酵素活性、質子運送能力、及酵素耦合能力都受到影響降低。 F755A, G759A 的耦合能力只剩下大約野生株的50%。實驗中鉀離子會促進酵素活性,而鈣、氟、鈉 則會抑制V-PPase. 我們的實驗也顯示C端最後10個胺基酸對於各種離子的反應是敏感的。實驗中野生株的V-PPase的酵素 KM 和 Vmax 分別是337 μM 和104 μmol PPi/ mg protein.h,而C端的突變株則明顯的降低了KM 和Vmax 的數值,這也表示我們所產生的突變改變了酵素本身的活性。根據一系列的實驗,我們推測C端胺基酸在酵素活性及質子運輸上扮演舉足輕重的角色。
Vacuolar proton pumping pyrophosphatase (V-PPase; EC 3.6.1.1), a homodimeric proton-translocase sustaining the proton gradient across the membrane, contains a single polypeptide with a molecular mass of approximately 80 kDa. Evidence demonstrated that the C-terminus of V-PPase is relatively conserved in various higher plants and locates near to the catalytic site. However, the real function of C-terminal region is unknown. Our previous study indicated using truncated variants that depletion of last 5 amino acids in C-terminus significantly decreased its activity; however, further removal of next 5 amino acids recovered its activity to about 60-70% of wild type. Accordingly, we identified individual amino acids on C-terminus using site-directed mutagenesis technique that focused on their roles in the structure and function of V-PPase. Our results showed that F755A, G759A, F763A, I765A decreased enzymatic activities, proton translocation, and coupling ratio of V-PPase. Coupling ratios of F755A, G759A retained only about 50% compared to wild type. K+ is stimulatory but Ca2+, F-, and Na+ are inhibitory to the V-PPase. Our results suggested that these C-terminal amino acids are sensitive to various ions especially last 10 residues. For wild type V-PPase, KM and Vmax are about 337 □M and 104 □mol PPi/ mg protein.h, respectively. Mutation of C-termianl amino acids apparently decreased their values of KM and Vmax, indicating a change in their enzymatic reactivity. In conclusion, C-terminal region of plant V-PPase would play an important role on enzymatic mechanism and participate in enzymatic and proton translocation reactions.
Baltscheffsky, M., Nadanaciva, S., and Schultz, A (1998) A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim. Biophys. Acta 1364:301-306
Britten, C. J., Turner, J. C., Rea, P. A. (1989) Identification and purification of substrate-binding subunit of higher plant H+- translocating inorganic pyrophosphatase. FEBS Lett. 256:200-206
Carden, D. E., Walker, D. J., Flowers, T. J., and Miller, A. J. (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant physiol. 131:676-683
Drozdowicz, Y. M., and Rea, P. A. (2001) Vacuolar H+-pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6:206-211
Drozdowicz, Y. M., Lu Y. P., Patel V., Fitz-Gibbon S., Miller J. H., Rea P. A. (1999) A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Lett. 460:505-512
Gordon-Weeks, R., Steele, S. H., Leigh, R. A. (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiol. 111:195-202
Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L. (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1608:190-199
Ikeda M, Rahman M. H, Moritani C, Umami K, Tanimura Y, Akagi R, Tanaka Y, Maeshima M, and Watanabe, Y. (1999) A vacuolar H+-pyrophosphatase in Acetabularia acetabulum: Molecular cloning and comparison with higher plants and bacterium. J. Exp. Bot. 50:139-140
Kuo, S. Y., and Pan, R. L. (1990) An essential arginyl residue in the tonoplast pyrophosphatase from etiolated mung bean seedlings. Plant Physiol. 93:1128-1133
Lin, H. H., Pan, Y. J., Hsu, S. H., Van, R. C., Hsiao, Y. Y., Chen, J. H., and Pan, R. L. (2005) Deletion mutation analysis on C-terminal domain of plant vacuolar H+-pyrophosphatase. Arch. Biochem. Biophys. 442: 206-213
Li, J., Yang, H., Peer, W. A., Richter, G., Blakeslee, J., Bandyopadhyay, A., Titapiwantakun, B., Undurraga, S., Khodakovskaya, M., Richards, E. L., Krizek, B., Murphy, A. S., Gilroy, S., and Gaziola, R. A. (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121-125
Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465:37-51
Maeshima, M., and Yoshida, S. (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J. Biol. Chem. 264:20068-20073
Maeshima, M. (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiol. 31:311-317
Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:469-497
Mimura, H., Nakanishi, Y., Hirono, M., and Maeshima, M. (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scannig mutagenesis. J. Biol. Chem. 279:35106-35112
Nakanishi, Y., Saijo, T., Wada, Y. and Maeshima M. (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276:7654-7660
Nishi, T., and Forgac, M. (2002) The vacuolar H+-ATPases—nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3:94-103
Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., Morris, J., Hirschi, J. D., and Gaziola, R. A. (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl. Acad. Sci. U. S. A. 102: 18830-18835
Sarafian, V., and Poole, R. J. (1989) Purification of an H+- translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 91:34-38
Schumacher, K. (2006) Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9:595-600
Scott, D. A., de Souza, W., Benchimol, M., Zhong, L., Lu, H. G., Moreno, S. N., and Docampo, R. (1998) Presence of a plant-like proton-pumping pyrophospatase in acidocalcisomes of Trypanosoma cruzi. J. Biol. Chem. 273:22151-22158
Shiratake, K., Kanayama, Y., Maeshima, M., and Yamaki, S. (1997) Changes in H+-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol. 38:1039-1045
Takasu, A., Nakanishi, Y., Yamauchi, T., and Maeshima, M. (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J. Biochem. 122:883-889
Tzeng, C. M., Yang, C. Y., Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. S., Ma, J. T., and Pan, R. L. (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem. J. 316:143-147
Yang, S. J., Jiang, S. S., Tzeng, C. M., Kuo, S. Y., and Pan, R. L. (1996) Involvement of tyrosine residue in the inhibition of plant vacuolar H+-pyrophosphatase by tetranitromethane. Biochim. Biophys. Acta 1294:89-97
Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L. (2000) A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5’-isothiocyanate. Biochim. Biophys. Acta 1460:375-383
Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. H., Tam, M. H., and Pan, R. L. (1999) Biochem. J. 342:641-646
Zancani, M., Skiera, L. A., and Sanders, S. D (2007) Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana. Biochim. Biophys. Acta 1768:311-316
Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N, N’-dicyclohexylcarbodiimide. J. Biol. Chem. 272:22340-22348