簡易檢索 / 詳目顯示

研究生: 王冠傑
Wang, Kuan-Chieh
論文名稱: 運用學習策略尋找艾爾法酒吧 賽局之奈許平衡
Learning to Play an El Farol Bar Game
指導教授: 李端興
Lee, Duan-Shin
口試委員: 張正尚
Chang, Cheng-Shang
黃之浩
Huang, Scott C.-H.
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 43
中文關鍵詞: 艾爾法酒吧賽局理論奈許平衡學習理論
外文關鍵詞: El Farol bar, game theory, Nash equilibrium, learning theory
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們首先分析了一個艾爾法酒吧賽局的虛擬決策過程, 然後我們考慮一個廣義的艾爾法酒吧賽局, 我們提出了在廣義的艾爾法酒吧賽局中,玩家的學習過程將達到奈許平衡。之後我們提出一個學習過程是由強化學習方法和虛擬決策的混合,我們將這個混合的學習過程應用於艾爾法酒吧賽局。


    In this paper we first analyze the fictitious play process of an El Farol bar game. We then consider a generalized El Farol bar game. We propose a learning procedure for the players in the generalized El Farol bar game to reach a Nash equilibrium. The proposed learning procedure is a mixture of the reinforcement learning method and the fictitious play method.

    中文摘要i Abstract ii Acknowledgements iii List of Figures vi List of Tables vii 1 Introduction 1 2 Fictitious Play of an El Farol Bar Game 5 2.1 A Special Case in which c = N-1 . . . . . . . . . . . . 11 2.2 A Special Case in which c = 1 . . . . . . . . . . . . . . 19 2.3 A General Case in which c = 2: : :N-2 . . . . . . . . . 20 3 A Generalized El Farol Bar Game 25 4 Reinforcement Learning and Fictitious Play 29 5 Numerical and Simulation Results 32 5.1 Simulation settings . . . . . . . . . . . . . . . . . . . . 33 5.2 Reinforcement learning method . . . . . . . . . . . . . 34 5.3 Fictitious play method . . . . . . . . . . . . . . . . . . 36 5.4 Mixed method . . . . . . . . . . . . . . . . . . . . . . . 40 6 Conclusions 41 Bibliography 42

    [1] D. Fudenberg and D. K. Levine, The theory of learning in games.Massachusetts: The MIT Press, 1999.
    [2] G. W. Brown, “Iterative solution of games by fictitious play,” in Activity Analysis of Production and Allocation. New York: John
    Wiley and Sons, 1951, ch. 24.
    [3] E. Hopkins, “Two competing models of how people learn in
    games,” Econometrica, vol. 70, no. 6, pp. 2141–2166, 2002.
    [4] I. Erev and A. E. Roth, “Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria,” The American Economic Review, vol. 88, no. 4, pp. 848–881, 1998.
    [5] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. Massachusetts: The MIT Press, 2012.
    [6] W. B. Arthur, “Complexity in economic theory. inductive reasoning and bounded rationality,” American Economic Review, vol. 84, 1994.42 BIBLIOGRAPHY 43
    [7] D. Easley and J. Kleinberg, Networks, crowds and markets reasoning about a highly connected world. Cambridge University Press, 2010.
    [8] D. Challet, M. Marsili, and G. Ottino, “Shedding light on el farol,” Physica A: Statistical Mechanics and Its Applications, vol. 332, pp. 469–482, 2004.
    [9] R. Franke, “Reinforcement learning in the el farol model,” Journal of Economic Behavior & Organization, vol. 51, pp. 367–388, 2003.
    [10] D. Whitehead, “The el farol bar problem revisited: Reinforcement learning in a potential game,” in ESE Discussion Papers 186. Edinburgh School of Economics, University of Edinburgh, Tech. Rep., 2008.
    [11] Y. R. Chao, “A note on “continuous mathematical induction”,” Bull. Amer. Math. Soc., vol. 26, no. 1, pp. 17–18, 1919.

    QR CODE