研究生: |
李宇笙 Lee, Yu-Sheng |
---|---|
論文名稱: |
穩健最佳化應用於平行機台排程問題 -以半導體封裝廠為例 A Robust Optimization Model for Unrelated Parallel Machine Scheduling Problem -A Case Study of Semiconductor Assembly |
指導教授: |
林則孟
Lin, James-T |
口試委員: |
陳勝一
姚銘忠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 非相關平行機台排程 、穩健最佳化模型 、可開始加工時間具有不確定性 |
外文關鍵詞: | unrelated parallel machine scheduling problem, robust optimization model, uncertain ready times |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所探討的是在非相關平行機台排程問題(Unrelated parallel machine scheduling)之中考慮訂單可開始加工時間(Ready time)、機台可行性(Machine eligibility)以及順序相依的設置時間(Sequence-dependent setup time)等限制下,建構一個混整數規劃(MIP)模型並以最小化總設置時間(Setup time)及等候開始加工時間(Delay time)為目標進行求解。在單部機台排程問題之中考慮順序相依設置時間的排程問題已被證明為NP-hard,因此本研究使用基因演算法(Genetic Algorithm)進行求解,以提升求解效率。
然而在實際生產系統之中,訂單可能會由於機器狀態、生產環境等不確定因素造成訂單延遲抵達。因此可能會造成原先的排程不可行或是績效較差,為避免頻繁發生此情形而導致需要重排,所以該如何得到一個穩健的排程在訂單可開始加工時間具有變異性的情況下將成為一個重要的議題。因此本研究將在考慮訂單可開始加工時間具有不確定性的情況下,提出一個穩健最佳化(Robust Optimization)模型,來解決訂單可開始加工時間具有不確定性的問題。
本論文以半導體封裝廠瓶頸站排程為實例,並透過穩健最佳化的方式得到在最小化設置時間以及等候開始加工時間的同時,在各情境(Scenario)之下的可行性(Feasibility)也能夠被提升。換句話說,由於訂單可開始加工時間具有不確定性,本研究不僅希望提升瓶頸站利用率以及降低訂單週期時間(Cycle time),並且期望當訂單可開始加工時間延遲時,求解的排程依舊可行(Feasible)。
This research considers an unrelated parallel machine scheduling problem with ready times, machine eligibility and sequence-dependent setup times. The objective of the problem is to minimize the weight sum of setup times and delay times. Accordingly, a mixed integer programming formulation is presented. Since the single machine scheduling problem with sequence-dependent setup times is known to be NP-hard, a genetic algorithm is then developed with neighborhood search operator to solve the deterministic scheduling problem, which is also NP-hard.
However, the ready time of each job is uncertain in real world. In this case, the optimal solution from deterministic model may become an infeasible or a bad solution. Therefore, the deterministic model may be unsuitable. A robust optimization model is then proposed for identifying a robust schedule across all possible scenarios.
In this research, a robust optimization model is developed to solve the unrelated parallel machine scheduling problem in Semiconductor Assembly Factory with consideration of the ready times uncertainty. Due to the ready times uncertainty, this research not only minimizes setup time and delay time but also remains feasible in all scenarios.
[1] 林則孟(2012),生產計劃與管理,華泰文化
[2] 顏嘉良(2016),探討投料、緩衝及瓶頸資源派工於半導體封裝製程,國
立清華大學工業工程與工程管理學系碩士論文
[3] 劉愛琳(2016),以穩健最佳化分析航班與卸載道之指派問題,國立清華大學
工業工程與工程管理學系碩士論文
[4] Amadeu, A. C., Andrea, C. S., & Thiago, F. N. (2015). Scenario-based heuristics with path-relinking for the robust set covering problem. The XI Metaheuristics International Conference.
[5] Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton University Press.
[6] Calfa, B. A., Agarwal, A., Grossmann, I. E., & Wassick, J. M. (2014). Data-driven multi-stage scenario tree generation via statistical property and distribution matching. Computers & Chemical Engineering, 68, 7-23.
[7] Centeno, G., & Armacost, R. L. (1997). Parallel machine scheduling with release time and machine eligibility restrictions, Computers ind. Engng Vol, 33, Nos 1-2. pp. 273-276.
[8] Cheng, C. Y., & Huang, L. W. (2017). Minimizing total earliness and tardiness through unrelated parallel machine scheduling using distributed release time control, Journal of Manufacturing Systems 42 1–10.
[9] Christie, R. M., & David Wu, S. (2002). Semiconductor capacity planning: stochastic modeling and computational studies. Iie Transactions, 34(2), 131-143.
[10] Fowler, J. W., Horng, S. M., & Jeffery K. (2003). A hybridized genetic algorithm to solve parallel machine scheduling problems with sequence dependent setups. International Journal of Industrial Engineering, 10(3). 232-243.
[11] Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of discrete mathematics, 5, 287-326.
[12] Guillén, G., Espuna, A., & Puigjaner, L. (2006). Addressing the scheduling of chemical supply chains under demand uncertainty. AIChE journal, 52(11), 3864-3881.
[13] Hood, S. J., Bermon, S., & Barahona, F. (2003). Capacity planning under demand uncertainty for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 16(2), 273-280.
[14] Hu, H., Ng, K. K. H., & Qin, Y. (2016). Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence-Dependent Setup Time, Scientific Programming, Volume 2016, Article ID 5127253, 13 pages.
[15] Joo, C .M., & Kim, B. S. (2012). Parallel machine scheduling problem with ready times, due times and sequence-dependent setup times using meta-heuristic algorithms, Engineering Optimization, Vol.44, No.9, 1021-1034.
[16] KURZ, M. E., & ASKIN, R. G. (2001). Heuristic scheduling of parallel machines with sequence-dependent set-up times, Int. J. Prod. Res., vol. 39, no. 16, 3747-3769.
[17] Leung, S. C. H., & Wu, Y. (2004). A robust optimization model for stochastic aggregate production planning, Production Planning & Control Vol. 15, No. 5, 502–514.
[18] Liao, L. W., & Sheen, G. J. (2008). Parallel machine scheduling with machine availability and eligibility constraints, European Journal of Operational Research 184, 458–467.
[19] McCormick, S. T., & Pinedo, M. L. (1995). Scheduling n independent jobs on m uniform machines with both flowtime and makespan objectives: a parametric analysis. ORSA Journal on Computing, 7(1), 63-77.
[20] Mulvey, J. M., Vanderbei, R., & Zenios, S. A. (1995). Robust Optimization of Large-Scale Systems, Operations Research, Vol. 43, No.2, 264-281.
[21] Nasr A. H., & ElMekkawy, T. Y. (2011). Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm, Int. J. Production Economics 132 279–291.
[22] Pereira, J., & Averbakh, I. (2011). Exact and heuristic algorithms for the interval data robust assignment problem, Computers & Operations Research 38 1153–1163.
[23] Piersma, N., & Dijk, W. V. (1996). A Local Search Heuristic for Unrelated Parallel Machine Scheduling with Efficient Neighborhood Search, Mathl. Comput. Modelling Vol. 24, No. 9, pp. 11-19.
[24] Sevaux, M., & Sörensen, K. (2002, April). Genetic algorithm for robust schedules. In 8th International Workshop on Project Management and Scheduling (PMS 2002) (pp. 330-333).
[25] Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times, European Journal of Operational Research 211 612–622.
[26] Wu, L., Shahidehpour, M., & Li, Z. (2012). Comparison of scenario-based and interval optimization approaches to stochastic SCUC. IEEE Transactions on Power Systems, 27(2), 913-921.
[27] Xu, X., Cui, W., Lin, J., & Qian, Y. (2013). Robust makespan minimisation in identical parallel machine scheduling problem with interval data, International Journal of Production Research, Vol. 51, No. 12, 3532–3548.
[28] Yalaoui, F., & Chu, C. (2003). An efficient heuristic approach for parallel machine scheduling with job splitting and sequence-dependent setup times. IIE Transactions, 35(2), 183-190.
[29] Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems, Int. J. Production Economics 64 385-397.