簡易檢索 / 詳目顯示

研究生: 王君浩
Chun-Hao Wang
論文名稱: λ幾何平面下時鐘樹建立的線長與鑽孔最佳化
λ-Geometry Clock Tree Construction with Wirelength and Via Minimization
指導教授: 麥偉基
Wai-Kei Mak
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 時鐘樹λ幾何Y架構X架構概略繞線細部繞線
外文關鍵詞: Clock tree, λ-Geometry, Y-architecture, X-architecture, Global route, Detailed route
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在深次微米積體電路技術中,連線延遲成為了影響IC晶片效能的主要因素。在擺放與繞線階段,線長的減少為最主要的目標。比較傳統的曼哈頓架構,新架構-X與Y架構-,在不同的金屬線層提供更多元的繞線方向來接線,以減少線長。然而,為支援多方向的繞線,多金屬線層的交錯,造成更多非預期的鑽孔數目。
    在本論文中,我們提出一個在λ平面兩階段的時鐘繞線演算法。概略繞線階段,針對λ平面提出一個普遍的零時序且最小線長的時鐘樹建立演算法。細部繞線階段,用兩個有效果且有效率的方式(NVM與BVM)減少潛在鑽孔數。比較曼哈頓架構,λ幾何時鐘樹繞線器,在Y架構有平均7.57% 與X架構平均9.68% 線長的減少。數據中顯示NVM與BVM方法應用在Y架構17%與X架構37%平均的鑽孔減少。


    In deep sub-micron VLSI technologies, the interconnect delay has become a dominant factor affecting performance of ICs. Wirelength reduction is the most fundamental objective in the P&R stage. Compared with traditional Manhattan architecture, X-architecture and Y-architecture—the new architectures—, provide more available routing directions correspond to different metal layers for chip interconnection to reduce wire length. However, these cause a lot of unexpected via count as a result of multiple metal layers being crossed in order to achieve specialized routing direction.
    In this paper, we propose a two-stage clock routing algorithm for λ-geometry plane. In global routing stage, we present a general zero skew clock tree construction algorithm with minimum wirelength under any kinds of routing architecture (λ-ZST). In detailed routing stage, two effective and efficient approaches (NVM and BVM) are used for decreasing the potential via count. Compared with the Manhattan architecture, our λ-geometry clock router achieves, on average, a 7.57% wirelength reduction in Y-architecture and 9.68% in X-architecture. In our experimental result, using NVM and BVM shows an average reduction in the via count of 17% in Y-architecture and 37% in X architecture respectively.

    Chapter 1 Introduction 1 Chapter 2 Problem Definition 7 Chapter 3 λ-Geometry Zero Skew Clock Tree with Minimum Wirelength 10 3.1 λ-Geometry Circle 10 3.2 Distance Calculation 12 3.3 λ-Geometry Defferred-Merge Embedding Algorithm 16 3.3.1 Bottom-Up Phase 16 3.3.2 Top-Down Phase 20 3.3.3 Topology Selection 22 Chapter 4 λ-Geometry Clock Tree with Via Minimzation 24 4.1 Detailed Routing Algorithm for Node Via Minimization (NVM) 27 4.2 Layer Arrangement for Branch Via Minimization (BVM) 34 Chapter 5 Expermental Results 44 Chapter 6 Conclustions 48

    [1] Teig, “The X Architecture: not your father’s diagonal wiring,” Proc. of System Level Interconnect Predicition, pp.33–37, 2002.
    [2] http://www.xinitiative.org/
    [3] Seraj Ahmad, Nikhil Jayakumar, Vijay Balasubramanian, Edward Hursey, Sunil P Khatri, Rabi Mahapatra, “X-Routing using Two Manhattan Route Instances”, Computer Design, 2005. Proceedings. 2005 International Conference on, p45 – 50, 2-5 Oct. 2005
    [4] Tsung-Yi Ho , Chen-Feng Chang , Yao-Wen Chang , Sao-Jie Chen, “Multilevel full-chip routing for the X-based architecture”, Proceedings of the 42nd annual conference on Design automation, June 13-17, 2005, San Diego, California, USA
    [5] Hongyu Chen , Chung-Kuan Cheng , Andrew B. Kahng , Ion Mandoiu , Qinke Wang , Bo Yao, “The Y-Architecture for On-Chip Interconnect: Analysis and Methodology,” Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, p.13, November 09-13, 2003
    [6] Hongyu Chen , Chung-Kuan Cheng , Andrew B. Kahng , Ion Mandoiu , Qinke Wang, “Estimation of wirelength reduction for λ-geometry vs. manhattan placement and routing,” International Workshop on System-Level Interconnect Prediction Proceedings of the 2003 international workshop on System-level interconnect prediction, p71, April 5-6, 2003
    [7] Kalyan Thumaty, Robert Lipsey, “Designing ICs with the 'X' Architecture” EEtimes, August 29, 2005
    [8] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, Kahng, A.B., “Zero skew clock routing with minimum wirelength,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on], p799-814, November, 1992
    [9] Masato Edahiro, A clustering-based optimization algorithm in zero-skew routings, Proceedings of the 30th international conference on Design automation, p.612-616, June 14-18, 1993
    [10] Masato Edahiro, “A clustering-based optimization algorithm in zero skew routings,” Proceedings of the 30st annual conference on Design automation conference, p.612-616,1993
    [11] Qing Zhu, Wayne Wei-Ming Dai, “Planar clock routing for high performance chip and package co-design,” IEEE Transactions on very large scale integration systems, Vol., 4, No. 2, June 1996.
    [12] J. Cong, A. B. Kahng, C.-K. Koh and C.-W. A. Tsao, ”Bounded-Skew Clock and Steiner Routing”, ACM Trans. on Design Automation of Electronic Systems, Vol. 4,
    No. 1, January, 1999.
    [13] R. S. Tsay, “An exact zero-skew clock routing algorithm,” IEEE Trans on CAD, Vol. 12, pp.242-249, 1993
    [14] Noriyuki Ito, Hideaki Katagiri, Ryoichi Yamashita, Hiroshi Ikeda, Hiroyuki Sugiyama, Hiroaki Komatsu, Yoshiyasu Tanamura, Akihiko Yoshitake, Kazuhiro Nonomura, Kinya Ishizaka, Hiroaki Adachi, Yutaka Mori, Yutaka Isoda, Yaroku Sugiyama, “Diagonal routing in high performance microprocessor design”, Proceedings of the 2006 conference on Asia South Pacific design automation ASP-DAC '06
    [15] Masato Edahiro, “An efficient zero-skew routing algorithm,” Annual ACM IEEE Design Automation Conference Proceedings of the 31st annual conference on Design automation, pp.375~380,1994
    [16] http://www.cadence.co.in/partners/articles.aspx, “Designing ICs with the 'X' Architecture,” Cadence , on eetime

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE