研究生: |
吳亮威 Wu, Liang-Wei |
---|---|
論文名稱: |
以異硬脂酸銅為前驅物製備奈米銅並配置成奈米銅墨水 Synthesis of Copper Nanoparticles by Using Copper Isostearate as Precursors and Preparation of Copper Inks |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
蔣本基
Chiang, Pen-Chi 王竹方 Wang, Chu-Fang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 異硬脂酸銅鹽 、奈米銅 、奈米銅墨水 、二氧化碳膨脹溶液 、壓縮流體反溶劑 、超臨界二氧化碳乾燥 、導電銅膜 |
外文關鍵詞: | copper isostearate, copper inks, conductive copper films |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的印刷電路板製程需經過上光阻、曝光、顯影及蝕刻等步驟,步驟繁瑣且蝕刻會產生廢液,若將噴墨印刷技術應用在印刷電路板等電子工業上,則能簡化步驟且不會有蝕刻所產生的廢液。目前奈米銀墨水發展較為成熟,一來銀本身的導電性佳二來對氧的活性較小,但是銀價格較高且離子遷移(Ion migration)較嚴重。銅的導電性與銀相近、價格便宜且離子遷移沒有銀嚴重,具有發展的潛力,但銅較容易氧化,若能克服容易氧化的問題,奈米銅墨水就可以取代奈米銀墨水。
本研究將氫氧化銅及異硬脂酸於正庚烷中合成異硬脂酸銅(Copper Isostearate, Cu(ISt)2),並以其為前驅物,聚乙烯吡咯烷酮(PVP)為保護劑,維生素C為還原劑,甲醇及無水酒精為溶劑,於還原過程中引入高壓二氧化碳形成二氧化碳膨脹液體,能在溫和的條件下(41 °C及CO2壓力736 psi)短時間(5分鐘)得到粒徑小(平均粒徑12 nm)的奈米銅。
製備之奈米銅應用部分分為銅墨水及高壓流體反溶劑法成膜。銅墨水方面為將製備之奈米銅懸浮溶液以離心去除雜質,再加入無水酒精及乙二醇以超音波震盪再分散,將之旋轉塗佈於玻璃片上,於燒結後能得到電阻率7.9×10-6 Ω·m之導電銅膜。而高壓流體反溶劑法成膜則是直接將製備好的奈米銅懸浮溶液以高壓二氧化碳為反溶劑沉積在玻璃上並乾燥,於燒結後能得到電阻率6.46×10-3 Ω·m之導電銅膜。
The traditional printed circuit board process involves coating photoresist, exposure, development, etching and so on. It includes many steps and etching will produce waste. If the inkjet printing technology can be used in printed circuit boards and other electronic industries, the process can be simplified and there will be no waste produced by etching. At present, the development of silver inks is more mature. The first reason is that silver is the most conductive metal. The second reason is that silver is stable under ambient atmospheric conditions. But the price of silver is higher and ion migration is more serious. The conductivity of copper is close to silver, but it’s cheaper and ion migration is not as serious as silver. Copper has the potential to be used in inkjet printing technology, but copper is easier to oxidize. If we can overcome the problem about oxidation, copper inks can replace silver inks.
In this study, we can synthesize copper isostearate from copper hydroxide and isostearic acid in heptane. We use copper isostearate as precursors, PVP as capping agents, vitamin C as reducing agents, methanol and absolute alcohol as solvents. In the process of reducing reaction, we introduce high-pressure CO2 to form CO2-expanded liquids, so that small copper nanoparticles (average particle size 12 nm) can be obtained in a short time (5 minutes) under mild conditions (41 ° C and CO2 pressure 736 psi).
The application parts of copper nanoparticle suspensions can be divided into copper ink and preparation of copper films by compressed fluid anti-solvent. To prepare copper ink, first we remove impurities by centrifugation, and then mix copper nanoparticles with absolute alcohol and ethylene glycol. After oscillating the mixed solution using ultrasonic waves, the well- dispersed solutions are copper inks. After sintering the spin-coated film, we can get a conductive copper film with the resistivity of 7.9×10-6 Ω·m. The preparation of copper films by compressed fluid anti-solvent can directly precipitate copper nanoparticles on the glass by high pressure CO2 as anti-solvent and open the valve to leak the liquid. Then dry the film by scCO2. After sintering, we can get a conductive copper film with the resistivity of 6.46×10-3 Ω·m.
1. Zschieschang, U., Klauk, H., Halik, M, Schmid, G. and Dehm, C., Flexible organic circuits with printed gate electrodes. Advanced Materials, 2003. 15(14): p. 1147-1151.
2. Kang, P. G., Ogunbo, S. O. and Erickson, D., High resolution reversible color images on photonic crystal substrates. Langmuir, 2011. 27(16): p. 9676-9680.
3. Yonezawa, T., Takeoka, S., Kishi, H., Ida, K. and Tomonari, M., The preparation of copper fine particle paste and its application as the inner electrode material of a multilayered ceramic capacitor. Nanotechnology, 2008. 19(14): p. 145706-145710.
4. Redinger, D., Molesa, S., Yin, S., Farschi, R. and Subramanian, V., An ink-jet-deposited passive component process for RFID. Ieee Transactions on Electron Devices, 2004. 51(12): p. 1978-1983.
5. Tekin, E., Smith, P. J. and Schubert, U. S., Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.
6. Khan, A., Rashid, A., Younas, R., Chong, R., A chemical reduction approach to the synthesis of copper nanoparticles. International Nano Letters, 2016. 6(1): p. 21-26.
7. Gaffet, E., Louison, C. and Faudot, F., Metastable phase-transformations induced by ball-milling in the Cu-W System. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1991. 134: p. 1380-1384.
8. Zhang, Y., Lam, F. L. Y., Hu, X. and Yan, Z., Fabrication of copper nanorods by low-temperature metal organic chemical vapor deposition. Chinese Science Bulletin, 2006. 51(21): p. 2662-2668.
9. Tilaki, R. M., Zad, A.I. and Mahdavi, S. M., Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Applied Physics a-Materials Science & Processing, 2007. 88(2): p. 415-419.
10. Haram, S. K., Mahadeshwar, A. R. and Dixit, S. G., Synthesis and characterization of copper sulfide nanoparticles in Triton-X 100 water-in-oil microemulsions. Journal of Physical Chemistry, 1996. 100(14): p. 5868-5873.
11. Lisiecki, I. and Pileni, M. P., Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 1993. 115(10): p. 3887-3896.
12. Pileni, M. P. and Lisiecki, I., Nanometer metallic copper particle synthesis in reverse micelles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1993. 80(1): p. 63-68.
13. Balogh, L. and Tomalia, D. A., Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. Journal of the American Chemical Society, 1998. 120(29): p. 7355-7356.
14. Ohde, H., Hunt, F. and Wai, C. M., Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chemistry of Materials, 2001. 13(11): p. 4130-4135.
15. Cheon, J. M., Lee, J. H., Song, Y. and Kim, J., Synthesis of Ag nanoparticles using an electrolysis method and application to inkjet printing. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2011. 389(1-3): p. 175-179.
16. Kumar, R. V., Mastai, Y., Diamanta, Y. and Gedanken, A., Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. Journal of Materials Chemistry, 2001. 11(4): p. 1209-1213.
17. Wang, Y., Biradar, A. V., Wang, G., Sharma, K. K., Duncan, C. T., Rangan S. and Asefa, T., Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chemistry – A European Journal, 2010. 16(35): p. 10735-10743.
18. Khanna, P. K., More, P., Jawalkar, J., Patil, Y. and Rao, N. K., Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature. Journal of Nanoparticle Research, 2009. 11(4): p. 793-799
19. Park, B. K., Jeong, S., Kim, D. and Lim, S. and Kim, J. S., Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007. 311(2): p. 417-424.
20. Wang, Y. H., Chen, P. L. and Liu, M. H., Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology, 2006. 17(24): p. 6000-6006.
21. Wu, C. W., Mosher, B. P. and Zeng, T. F., One-step green route to narrowly dispersed copper nanocrystals. Journal of Nanoparticle Research, 2006. 8(6): p. 965-969.
22. Narushima, T., Tsukamoto, H. and Yonezawa, T., High temperature oxidation event of gelatin nanoskin-coated copper fine particles observed by in situ TEM. Aip Advances, 2012. 2(4): p. 042113.
23. Lisiecki, I., Billoudet, F. and Pileni, M. P., Control of the shape and the size of copper metallic particles. Journal of Physical Chemistry, 1996. 100(10): p. 4160-4166.
24. Qi, L. M., Ma, J. M. and Shen, J. L., Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. Journal of Colloid and Interface Science, 1997. 186(2): p. 498-500.
25. Wu, S. H. and Chen, D. H., Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of Colloid and Interface Science, 2004. 273(1): p. 165-169.
26. Salzemann, C., Lisiecki, I., Urban, J. and Pileni, M. P., Anisotropic copper nanocrystals synthesized in a supersaturated medium: Nanocrystal growth. Langmuir, 2004. 20(26): p. 11772-11777.
27. Song, X., Sun, S., Zhang, W. and Yin, Z., A method for the synthesis of spherical copper nanoparticles in the organic phase. Journal of Colloid and Interface Science, 2004. 273(2): p. 463-469.
28. Ang, T. P., Wee, T. S. A. and Chin, W. S., Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. Journal of Physical Chemistry B, 2004. 108(30): p. 11001-11010.
29. Mott, D., Galkowski, J., Wang, L., Luo, J. and Zhong, C. J., Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 2007. 23(10): p. 5740-5745.
30. Kanninen, P., Johans, C., Merta, J. and Kontturi, K., Influence of ligand structure on the stability and oxidation of copper nanoparticles. Journal of Colloid and Interface Science, 2008. 318(1): p. 88-95.
31. Goia, D. V. and Matijevic, E., Preparation of monodispersed metal particles. New Journal of Chemistry, 1998. 22(11): p. 1203-1215.
32. Wang, L. Y., Cai, L. J., Shen, D., Feng, Y. G. and Chen, M., Reducing agents and capping agents in the preparation of metal nanoparticles. Journal of Progress in Chemistry, 2010. 22(04): p. 580-592.
33. Khanna, V. K., Nanosensors: Physical, Chemical, and Biological. CRC Press Book, 2012. p. 90.
34. Derjaguin, B. V., Laudau L., Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta physicochim, USSR, 1941.14: p. 633-662.
35. Verway E. J. W., Overbeek, J., Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry, 1947. 51(3): p. 631-636.
36. Magdassi, S., Grouchko, M. and Kamyshny, A., Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010. 3(9): p. 4626-4638.
37. Li, J. and Liu, C. Y., Carbon-coated copper nanoparticles: synthesis, characterization and optical properties. New Journal of Chemistry, 2009. 33(7): p. 1474-1477.
38. Luechinger, N. A., Athanassiou, E. K. and Stark, W. J., Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008. 19(44): p. 445201
39. Athanassiou, E. K., Grass, R. N. and Stark, W. J., Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006. 17(6): p. 1668-1673.
40. Grass, R. N. and Stark, W. J., Gas phase synthesis of fcc-cobalt nanoparticles. Journal of Materials Chemistry, 2006. 16(19): p. 1825-1830.
41. Kobayashi, Y. and Sakuraba, T., Silica-coating of metallic copper nanoparticles in aqueous solution. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 317(1-3): p. 756-759.
42. Lee, W. R., Kim, M. G., Choi, J. R., Park, J., Ko, S. J., Oh, S. J. and Cheon, J., Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. Journal of the American Chemical Society, 2005. 127(46): p. 16090-16097.
43. Grouchko, M., Kamyshny, A. and Magdassi, S., Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 2009. 19(19): p. 3057-3062.
44. Ng, K. H. and Penner, R. M., Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation. Journal of Electroanalytical Chemistry, 2002. 522(1): p. 86-94.
45. Manikandan, D., Mohan, S. and Nair, K. G. M., Annealing-induced metallic core-shell clusterization in soda-lime glass: an optical absorption study - experiment and theory. Physica B-Condensed Matter, 2003. 337(1-4): p. 64-68.
46. Grouchko, M., Kamyshny, A., Ben-Ami, K., Shlomo, M., Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. Journal of Nanoparticle Research, 2009. 11(3): p. 713-716.
47. Engels, V., Benaskar, F., Jefferson, D. A., Johnson, B. F. and Wheatley, A. E., Nanoparticulate copper - routes towards oxidative stability. Dalton Transactions, 2010. 39(28): p. 6496-6502.
48. Jeong, S., Woo, K., Kim, D., Lim, S., Kim, J. S., Shin, H., Xia, Y. and Moon J., Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Advanced Functional Materials, 2008. 18(5): p. 679-686.
49. Hasell, T., Lagonigro, L., Peacock, A. C., Yoda, S., Brown, P. D., Sazio, P. J. A., & Howdle, S. M., Silver nanoparticle impregnated polycarbonate substrates for surface enhanced Raman spectroscopy. Advanced Functional Materials, 2008. 18(8): p. 1265-1271.
50. Jessop, P. G. and Subramaniam, B., Gas-expanded liquids. Chemical reviews, 2007. 107(6): p. 2666-2694.
51. Lin, I. H. and Tan, C. S., Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol. The Journal of Supercritical Fluids, 2008. 46(2): p. 112-117
52. Yin, J. Z. and Tan, C. S., Solubility of hydrogen in toluene for the ternary system H2+ CO2+ toluene from 305 to 343K and 1.2 to 10.5 MPa. Fluid phase equilibria, 2006. 242(2): p. 111-117.
53. Chen, Y. C. and Tan, C. S., Hydrogenation of p-chloronitrobenzene by Ni–B nanocatalyst in CO2-expanded methanol. The Journal of Supercritical Fluids, 2007. 41(2): p. 272-278.
54. Lin, H. W., Yen, C. H. and Tan, C. S., Aromatic hydrogenation of benzyl alcohol and its derivatives using compressed CO2/water as the solvent. Green Chemistry, 2012. 14(3): p. 682-687.
55. Wei, H. H., Yen, C. H., Lin, H. W. and Tan, C. S., Synthesis of bimetallic Pd-Ag colloids in CO2-expanded hexane and their application in partial hydrogenation of phenylacetylene. The Journal of Supercritical Fluids, 2013. 81: p. 1-6.
56. Anand, M., Bell, P. W., Fan, X., Enick, R. M. and Roberts, C. B., Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds. The Journal of Physical Chemistry B, 2006. 110(30): p. 14693-14701.
57. Bell, P. W., Anand, M., Fan, X., Enick, R. M. and Roberts, C. B., Stable dispersions of silver nanoparticles in carbon dioxide with fluorine-free ligands. Langmuir, 2005. 21(25): p. 11608-11613.
58. Hsieh, H. T., Chin, W. K. and Tan, C. S., Facile synthesis of silver nanoparticles in CO2-expanded liquids from silver isostearate precursor. Langmuir, 2010. 26(12): p. 10031-10035.
59. Huang, Y. C., Yen, C. H., Lin, H. W. and Tan, C. S., Direct preparation of silver nanoparticles and thin films in CO2-expanded hexane. The Journal of Supercritical Fluids, 2014. 89: p. 137-142.
60. 陳柏文,(2015),“高壓流體反溶劑法製備奈米銀複合膜”,碩士論文,國立清華大學化學工程研究所。
61. Grouchko, M., Kamyshny, A., Ben-Ami, K. and Magdassi, S., Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. Journal of Nanoparticle Research, 2009. 11(3): p. 713-716.
62. Tsai, C. Y., Chang, W. C., Chen, G. L., Chung, C. H., Ma, W. Y. and Yang, T. N., A study of the preparation and properties of antioxidative copper inks with high electrical conductivity. Nanoscale Research Letters, 2015. 10(1): p. 1-7.
63. Yu, W., Xie, H., Chen, L., Li, Y. and Zhang, C., Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Research Letters, 2009. 4(5): p. 465-470.
64. Yeshchenko, O. A., Dmitruk, I. M., Alexeenko, A. A., and Dmytruk, A. M., Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Physical Review B, 2007. 75(8): p. 085434-0855443.