簡易檢索 / 詳目顯示

研究生: 薛仰志
Hsueh, Yang-Chih
論文名稱: 以原子層沉積法製備奈米鉑觸媒於新穎多孔性載體應用於高效能質子交換膜燃料電池及其加速老化之研究
Fabrication of Platinum Catalyst on Novel Porous Supports by Atomic Layer Deposition for High Specific Power Density Proton Exchange Membrane Fuel Cell and Its Accelerated Degradation Test
指導教授: 彭宗平
Perng, Tsong-Pyng
口試委員: 葉君棣
薛富盛
王冠文
蕭健男
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 185
中文關鍵詞: 原子層沉積質子交換膜燃料電池白金
外文關鍵詞: Atomic layer deposition, Proton exchange membrane fuel cell, Platinum
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於燃料電池有低汙染、無噪音、高效率等之優異性能,被公認為是最具有潛力的綠色能源之一。即使具有多項的優異特性,燃料電池在商品化的過程中仍然有不少的挑戰,其中最大的課題就是如何降低電池的成本以及增加耐久度。觸媒的成本在整個燃料電池中佔了將近一半,所以如何降低觸媒的使用量,並同時維持甚至提升燃料電池的效率,是我們所面臨的一大課題。
    本論文的研究目的係以此作為出發點,經由原子層沉積技術(atomic layer deposition, ALD)製備鉑奈米晶粒,沈積均勻分散且顆粒大小一致之白金奈米顆粒,作為質子交換膜燃料電池之觸媒,為國內首創;並以創新的奈米結構材取代傳統碳載體,俾降低觸媒使用量,並提高燃料電池的效率。本論文分為兩部分,分別對製備不同的奈米結構載體和燃料電池耐久度測試進行研究。
    第一部分中,奈米碳管(carbon nanotube, CNT)因具有高導電性、高比表面積與高化學穩定性等特點而作為觸媒載體,但由於表面反應性不佳,須經過前處理才得以在碳管表面提供反應缺陷或官能基以供沉積觸媒。本論文分別利用氧氣電漿以及酸洗處理在CNT表面形成反應缺陷或官能基,並以ALD於其上成長鉑奈米觸媒,在分散性及均勻性上皆表現優異。在電池性能方面,酸洗處理後製備而成的膜電極組(membrane electrode assembly, MEA)結果顯示較氧氣電漿處理的為佳,接近使用E-Tek商用電極的對照組,但ALD製備鉑觸媒擔載量(0.019 mg/cm2)僅為商用電極使用量(0.5 mg/cm2)的二十五分之一,其比功率密度高於E-Tek商用電極十倍之多,在降低觸媒使用量的目標上實為一大進展。
    除了CNT之外,本論文中亦製備奈米蜂巢狀(nanohoneycomb)及反蛋白石光子晶體(inverse opal)結構作為觸媒載體。奈米蜂巢狀結構具有三維的多孔性結構,在本文中此種結構是由金屬鎳所構成,除了高比表面積、高導電性的特點之外,亦有研究指出,利用鎳作為基材成長白金觸媒,在電化學的表現上即有合金的效果產生;反蛋白石光子晶體亦為三維的多孔性結構,由於此種結構的多層規則性排列,作為燃料電池的觸媒載體的比表面積得以提升,而為了應用在燃料電池上,材料選定為氮化鈦(TiN),除了符合燃料電池載體的材料特性外,更具有優於碳黑的導電性,使得在提升比表面積的同時又能夠在導電性上得到兼顧。
    論文的第二部分為燃料電池耐久度測試,係採用CNT作為觸媒載體製備而成的膜電極組進行實驗。耐久度測試動輒上千小時,為節省實驗時間,使用動態負載的方式加速膜電極組老化機制(accelerated degradation test, ADT),以在短時間達到老化目標,在100小時的老化測試中,可以達到60000次循環電流週期,並利用電化學及表面分析儀器分析觸媒及加速老化後的燃料電池性能。


    Since fuel cells have the high energy density and low pollution in the reaction process, they are recognized as one of the most promising green energy devices. Even with many excellent properties, commercialization of fuel cells still faces many challenges. The two most significant issues are how to reduce the cost and increase the durability of the fuel cell. The cost of the catalyst accounts for about fifty percent of the fuel cell, so how to reduce the amount of catalyst used and maintain the efficiency of fuel cell at the same time is a major issue that we are facing. It is also the main purpose of this research.
    Atomic layer deposition (ALD) technique was adopted to prepare platinum catalyst nanoparticles with uniform particle size and well dispersion. Furthermore, innovative nanostructures were used to replace the traditional carbon support. It was attempted to reduce the amount of catalyst and to improve the efficiency of proton exchange membrane fuel cells (PEMFCs). The dissertation is divided into two parts, the first part focuses on the preparations of various innovative nanostructured catalyst and supports, and the second part is to study the fuel cell durability.
    In the first section, carbon nanotube (CNT) was chosen to be as the support because of its high electrical conductivity, high specific surface area, and high chemical stability. Because the surface reactivity of CNT is poor, pre-treatment is needed to create defects and functional groups on the surface of CNT for depositing the catalyst. In this study, two different pre-treatment processes are chosen to modify the surface of CNT. The first one is oxygen plasma treatment and the other one is acid treatment. After the pre-treatment, Pt nanoparticles with good dispersion and uniformity are deposited by ALD. The membrane electrode assembly (MEA) performances of PEMFCs made with acid treated CNT are better than that made with oxygen plasma treated and close to that of commercial E-Tek electrodes. The most remarkable finding is that the ultra-low Pt loading of electrode, 0.019 mg/cm2. This is much lower than commercial one (0.5 mg/cm2), has the specific power density 11 times higher than that made with commercial E-Tek electrodes.
    In addition to CNT, Ni nanohoneycomb and TiN inverse opal structures as the catalyst supports are also fabricated. The Ni nanohoneycomb structure is a three-dimensional porous structure. Apart from high surface area and high conductivity, the electrical property of Pt deposited on Ni substrate is similar to that of Pt-Ni alloys. Inverse opal structure is also a three-dimensional porous structure, and the multilayer structure with a regular arrangement would enhance the specific surface area of the support. In order to apply to fuel cells, TiN is chosen as the support material. In addition to the characteristics that are suitable for the fuel cell, the conductivity of TiN is better than that of carbon black. Therefore the TiN inverse opal structure could enhance the specific surface area and the support conductivity at the same time.
    The second part of the dissertation is to study the fuel cell durability. MEA made by acid treated CNTs as the catalyst support is used in the experiment. In general, durability test often takes thousands of hours. In order to reduce the test time, a dynamic load method is used to accelerate the aging process (accelerated degradation test, ADT), which could achieve the degradation target in a shorter time. It could achieve 60,000 circulating current cycles in 100 hours of ADT test. The electrochemical and surface analysis methods are adopted to analyze the catalyst degradation after ADT of the fuel cells.

    摘要 Abstract 誌謝 Chapter 1 Introduction 1-1 Fuel Cell Fundamentals 1 1-1-1 The development of fuel cells 1 1-1-2 The superiority of fuel cells 4 1-1-3 Types of fuel cell 6 1-1-4 Lifetime of fuel cell 9 1-2 Atomic Layer Deposition (ALD) 12 1-2-1 The rise of ALD 13 1-2-2 The advantages and limitations of ALD 13 Chapter 2 Literature Review 2-1 Basic Principles of PEMFC 18 2-1-1 Fuel cell thermodynamics 20 2-1-2 Fuel cell reaction kinetics 22 2-2 Components of PEMFC 26 2-2-1 Proton exchange membrane (PEM) 26 2-2-2 Catalyst layer 28 2-2-2-1 Catalyst 28 2-2-2-2 Particle size effect 33 2-2-2-3 Carbon catalyst supports 38 2-2-2-4 Non-carbonaceous catalyst supports 39 2-2-3 Gas diffusion layer 40 2-2-4 Bipolar plates 46 2-3 Catalyst Deposition Methods for Low Pt-Loading Electrocatalysts 46 2-3-1 Pt loading issues 48 2-3-2 Catalyst deposition methods 49 2-4 Atomic Layer Deposition (ALD) 54 2-4-1 ALD theory and mechanism 54 2-4-2 ALD instrumentation 58 2-4-3 ALD of Pt catalyst 58 2-5 PEMFC Durability and Degradation Test 60 Part A Fabrication of Pt Nanoparticle Catalyst by ALD on Novel Nanoporous Supports for Application in PEMFC Chapter 3 Deposition of Platinum on Oxygen Plasma Treated Carbon Nanotubes by ALD 3.1 Introduction 65 3.2 Experimental procedure 66 3.3 Results and Discussion 69 3.4 Conclusion 86 Chapter 4 Deposition of Platinum on Acid Treated Carbon Nanotubes by ALD 4-1 Introduction 88 4-2 Experimental 89 4-3 Results and Discussion 91 4-4 Conclusion 105 Chapter 5 Deposition of Platinum Catalyst on Ni Nanohoneycomb Support by Atomic Layer Deposition for PEMFC 5-1 Introduction 106 5-2 Experimental 107 5-3 Results and Discussion 108 5-4 Conclusion 113 Chapter 6 Deposition of Platinum on Titanium Nitride Nano-network Support by ALD 6-1 Introduction 115 6-2 Experimental 116 6-3 Results and Discussion 119 6-4 Conclusion 126 Part B Durability and Degradation Test of Catalyst Fabricated by ALD for High Specific Power Density PEMFC Chapter 7 Accelerated Degradation Test of Catalyst Fabricated by Atomic Layer Deposition for High Specific Power Density Proton Exchange Membrane Fuel Cell 7-1 Introduction 129 7-2 Experimental 131 7-3 Results and Discussion 135 7-4 Conclusion 145 Chapter 8 Conclusions 147 Chapter 9 Suggested Future Work 150 References 154 Publication List 182

    1 Fairbanks, J. W., Engine maturity, efficiency, and potential improvements. In Diesel Engine Emission Reduction Conference (Coronado, California), (2004).
    2 Boudghene, S. A. and Traversa, E., “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy.” Renew Sustain. Energ. Rev., 6, 433–455 (2002).
    3 Behling, N. H., Fuel Cells: Current Technology Challenges and Future Research Needs, Elsevier, Amsterdam, (2013).
    4 http:// www.micro-vett.it
    5 Damberger, T. A., “Fuel cells for hospitals.” J. Power Sources, 71, 45–50 (1998).
    6 Fuel Cell Today. The fuel cell today industry review 2012. Corporate report
    < http://www.fuelcelltoday.com>.
    7 Kirubakaran, A., Jain, S., and Nema, R. K., “A review on fuel cell technologies and power electronic interface.” Renew. Sust. Energ. Rev., 13, 2430–2440 (2009).
    8 Basu, S., Recent trend in Fuel Cell Science and Technology. Anamaya Publishers, New Delhi, India, (2007).
    9 Mekhilef, S., Saidur, R., and Safari, A., “Comparative study of different fuel cell technologies.” Renew. Sust. Energ. Rev., 16, 981–989 (2012).
    10 Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan, 3.4-1–3.4-49 (2012).
    < http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/ >
    11 Leskela, M. and Ritala, M., "Atomic layer deposition chemistry: recent developments and future challenges.” Angew. Chem. Int. Ed., 42, 5548–5554 (2003).
    12 Aleskovskii, V. B., thesis, Technological Institute, Leningrad, (1952).
    13 Suntola, T. and Antson, J., “Method for producing compound thin films.” U. S. Patent, No. 4,058,430 (1977).
    14 Pinna, N. and Knez, M. (Eds.), Atomic Layer Deposition of Nanostructured Materials, Wiley-VCH, Weinheim, Germany, (2012).
    15 http://notijenck.com.ar/?p=1289
    16 Vogler, D. and Doe, P., “ALD special report-Where's the metal.” Solid State Technol., 46, 35–44 (2003).
    17 http://electrochem.cwru.edu/encycl/art-f04-fuel-cells-pem.htm
    18 Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel cells: principles, types, fuels, and applications.” ChemPhysChem, 1, 162–193 (2000).
    19 U.S. DOE, Fuel Cell Handbook, (7th ed.), DOE/NETL, Morgantown WV (2004).
    20 O'Hayre, R. P., Cha, S. W., Colella, W., and Prinz, F. B., Fuel cell fundamentals, John Wiley & Sons, New York (2006).
    21 http://www4.nau.edu/meteorite/Meteorite/Book-GlossaryA.html
    22 Gasteiger, H. A., Kocha, S. S., Sompalli, B., and Wagner, F. T., “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs.” Appl. Catal. B: Environ., 56, 9–35 (2005).
    23 http://www.bloggang.com/viewdiary.php?id=wing41&month=07-2007&date=12&group=1&gblog=2
    24 Heitner-Wirguin, C., “Recent advances in perfluorinated ionomer membranes: structure, properties and applications.” J. Membr. Sci., 120, 1–33 (1996).
    25 Mauritz, K. A. and Moore, R. B., “State of understanding of Nafion.” Chemical reviews, 104, 4535–4585 (2004).
    26 Rikukawa M. and Sanui K., “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers.” Prog Polym Sci., 25, 1463–502 (2000).
    27 Deluca N. W. and Elabd Y. A., “Polymer electrolyte membranes for the direct methanol fuel cell: A review.” J. Polym. Sci., Part B: Polym. Phys., 44, 2201–2213 (2006).
    28 Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., and Chorkendorff, I., “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.” Science, 317, 100–102 (2007).
    29 Jeng, K. T., Chien, C. C., Hsu, N. Y., Yen, S. C., Chiou, S. D., Lin, S. H., and Huang, W. M., “Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition.” J. Power sources, 160, 97–104 (2006).
    30 Antolini, E., “Formation of carbon-supported PtM alloys for low temperature fuel cells: A review.” Mater. Chem. Phys., 78, 563–573 (2003).
    31 Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., and Jonsson, H., “Origin of the overpotential for oxygen reduction at a fuel-cell cathode.” J. Phys. Chem. B, 108, 17886–17892 (2004).
    32 Kocha, S. S., Vielstich, W., Gasteiger, H. A., and Lamm, A., Handbook of Fuel Cells—Fundamentals, Technology and Applications, Wiley, New York (2003).
    33 Ghosh, T., Leonard, B. M., Zhou, Q., and DiSalvo, F. J., “Pt alloy and intermetallic phases with V, Cr, Mn, Ni, and Cu: synthesis as nanomaterials and possible applications as fuel cell catalysts.” Chem. Mater., 22, 2190–2202 (2010).
    34 Xiong, L. and Manthiram A., “Nanostructured Pt–M/C (M= Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells.” Electrochim. Acta, 50, 2323–2329 (2005).
    35 Li, W., Zhou, W., Li, H., Zhou, Z., Zhou, B., Sun, G. and Xin, Q., “Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell.” Electrochim. Acta, 49, 1045–1055 (2004).
    36 Maillard, F., Martin, M., Gloaguen, F., and Leger, J. M., “Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition.” Electrochim. Acta, 47, 3431–3440 (2002).
    37 Antolini, E., Salgado, J. R. C., Santos, L. G. R. A., Garcia, G., Ticianelli, E. A., Pastor, E., and Gonzalez, E. R., “Carbon supported Pt–Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells.” J. Appl. Electrochem., 36, 355–362 (2006).
    38 Freund, A., Lang, J., Lehmann, T., and Starz, K. A., “Improved Pt alloy catalysts for fuel cells.” Catal. Today, 27, 279–283 (1996).
    39 Moreno, B., Chinarro, E., Pérez, J. C., and Jurado, J. R., “Combustion synthesis and electrochemical characterisation of Pt–Ru–Ni anode electrocatalyst for PEMFC.” Appl. Catal. B: Environ., 76, 368–374 (2007).
    40 Jalan, V. and Taylor, E. J., “Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid.” J. Electrochem. Soc., 130, 2299–2302 (1983).
    41 Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A., and Uribe, F., “Platinum monolayer fuel cell electrocatalysts.” Top. Catal., 46, 249–262 (2007).
    42 Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G. F., Ross, P. N., Lucas, and C. A., Markovic, N. M., “Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability.” Science, 315, 493–497 (2007).
    43 Greeley, J., Nørskov, J. K., and Mavrikakis, M., “Electronic structure and catalysis on metal surfaces.” Annu. Rev. Phys. Chem., 53, 319–348 (2002).
    44 Hammer, B. and Nørskov, J. K., “Electronic factors determining the reactivity of metal surfaces.” Surf. Sci., 343, 211–220 (1995).
    45 Xu, Y., Ruban, A. V., and Mavrikakis, M., “Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys.” J., Am. Chem. Soc., 126, 4717–4725 (2004).
    46 Shao, M., Peles, A., and Shoemaker, K., “Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity.” Nano letters, 11, 3714–3719 (2011).
    47 Yoshida, H., Kinumoto, T., Iriyama, Y., Uchimoto, Y., and Ogumi, Z., “XAS study for degradation mechanism of Pt/C catalyst during potential cycling test.” ECS Trans., 11, 1321–1329 (2007).
    48 Aricò, A. S., Stassi, A., Modica, E., Ornelas, R., Gatto, I., Passalacqua, E., and Antonucci, V., “Evaluation of high temperature degradation of Pt/C Catalysts in PEM fuel cells.” ECS Trans., 3, 765–774 (2006).
    49 Xie, J., Wood III, D. L., More, K. L., Atanassov, P., and Borup, R. L., “Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions.” J. Electrochem. Soc., 152, A1011–A1020 (2005).
    50 Tada, T., Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 3, John Wiley & Sons, New York (2003).
    51 Jha, N., Leela Mohana Reddy, A., Shaijumon, M. M., Rajalakshmi, N., and Ramaprabhu, S., “Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell.” Int. J. Hydrogen Energy, 33, 427–433 (2008).
    52 Waje, M. M., Wang, X., Li, W., and Yan, Y., “Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells.” Nanotechnology, 16, S395 (2005).
    53 Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C., and Yan, Y., “Proton exchange membrane fuel cells with carbon nanotube based electrodes.” Nano letters, 4, 345–348 (2004).
    54 Ismagilov, Z. R., Kerzhentsev, M. A., Shikina, N. V., Lisitsyn, A. S., Okhlopkova, L. B., Barnakov, C. N., Sakashita, M., Iijima, T., and Tadokoro, K., “Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials.” Catalysis Today, 102, 58–66 (2005).
    55 Seger, B. and Kamat, P. V., “Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells.” J. Phys. Chem. C, 113, 7990–7995 (2009).
    56 Sahu, A. K., Sridhar, P., and Pitchumani, S., “Mesoporous carbon for polymer electrolyte fuel cell electrodes.” J. Indian Inst. Sci., 89, 437–445 (2012).
    57 Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., Elías, A. L., Muñoz-Sandoval, E., Cano-Márquez, A. G., Charlier, J. C., and Terrones, H., “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications.” Nano Today, 5, 351–372 (2010).
    58 Wang, X., Waje, M., and Yan, Y., “CNT-based electrodes with high efficiency for PEMFCs.” Electrochem. Solid-State Lett., 8, A42–A44 (2005).
    59 Cui, Z., Guo, C., and Li, C. M., “Self-assembled phosphomolybdic acid–polyaniline–graphene composite-supported efficient catalyst towards methanol oxidation.” J. Mater. Chem. A, 1, 6687–6692 (2013).
    60 Antolini, E. and Gonzalez, E. R., “Ceramic materials as supports for low-temperature fuel cell catalysts.” Solid State Ionics, 180, 746–763 (2009).
    61 Huang, S. Y., Ganesan, P., Park, S., and Popov, B. N., “Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications.” J. Am. Chem. Soc., 131, 13898–13899 (2009).
    62 Chhina, H., Campbell, S., and Kesler, O., “An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells.” J. Power Sources, 161, 893–900 (2006).
    63 Mozer, T. S., Dziuba, D. A., Vieira, C. T., and Passos, F. B., “The effect of copper on the selective carbon monoxide oxidation over alumina supported gold catalysts.” J. Power Sources, 187, 209–215 (2009).
    64 Seger, B., Kongkanand, A., Vinodgopal, K., and Kamat, P. V., “Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell.” J. Electroanal. Chem., 621, 198–204 (2008).
    65 Ganesan, R. and Lee, J. S., “An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum.” J. Power Sources 157, 217–221 (2006).
    66 Huang, S. Y., Ganesan, P., and Popov, B. N., “Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application.” Appl. Catal. B: Environ., 93, 75–81 (2009).
    67 Sharma, S. and Pollet, B. G., “Support materials for PEMFC and DMFC electrocatalysts–A review.” J. Power Sources, 208, 96–119 (2012).
    68 Oyama, S. T., Chemistry of transition metal carbides and nitrides. Blackie Academic & Professional, London (1996).
    69 Musthafa, O. T. M. and Sampath, S., “High performance platinized titanium nitride catalyst for methanol oxidation.” Chem. Commun., 1, 67–69 (2008).
    70 Bazylak, A., “Liquid water visualization in PEM fuel cells: A review.” Int. J. Hydrogen Energy, 34, 3845–3857 (2009).
    71 http://fuelcellsetc.com/2013/03/comparing-gas-diffusion-layers-gdl/
    72 Weber, A. Z. and Newman, J., “Effects of microporous layers in polymer electrolyte fuel cells.” J. Electrochem. Soc., 152, A677–A688 (2005).
    73 Wang, X. L., Zhang, H. M., Zhang, J. L., Xu, H. F., Tian, Z. Q., Chen, J., Zhong, H. X., Liang, Y. M., and Yi, B. L., “Micro-porous layer with composite carbon black for PEM fuel cells.” Electrochim. Acta, 51, 4909–4915 (2006).
    74 Paganin, V. A., Ticianelli, E. A., and Gonzalez, E. R., “Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells.” J. Appl. Electrochem., 26, 297–304, (1996).
    75 Hermann, A., Chaudhuri, T., and Spagnol, P., “Bipolar plates for PEM fuel cells: A review.” Int. J. Hydrogen Energy, 30, 1297–1302 (2005).
    76 Middelman, E., Kout, W., Vogelaar, B., Lenssen, J., and De Waal, E., “Bipolar plates for PEM fuel cells.” J. Power Sources, 118, 44–46 (2003).
    77 Yang, H. and Zhao, T. S., “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells.” Electrochim. Acta, 50, 3243–3252 (2005).
    78 Gamburzev, S. and Appley, A. J., “Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC).” J. Power Sources, 107, 5–12 (2002).
    79 Mukerjee, S., Srinivasan, S., and Appleby, A. J., “Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells.” Electrochim. Acta, 38, 1661–1669 (1993).
    80 Litster, S. and McLean, G., “PEM fuel cell electrodes.” J. Power Sources, 130, 61–76 (2004).
    81 Wilson, M. S., Valerio, J. A., and Gottesfeld, S., “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers.” Electrochim. Acta, 40, 355–363 (1995).
    82 Murphy, O. J., Hitchens, G. D., and Manko, D. J., “High power density proton-exchange membrane fuel cells.” J. Power Sources, 47, 353–368 (1994).
    83 Ralph, T. R., Hards, G. A., Keating, J. E., Campbell, S. A., Wilkinson, D. P., Davis, M., St-Pierre, J., and Johnson, M. C., “Low cost electrodes for proton exchange membrane fuel cells performance in single cells and Ballard stacks.” J. Electrochem. Soc., 144, 3845–3857 (1997).
    84 Wilson, M. S. and Gottesfeld, S., “Thin-film catalyst layers for polymer electrolyte fuel cell electrodes.” J. Appl. Electrochem., 22, 1–7 (1992).
    85 O’Hayre, R., Lee, S. J., Cha, S. W., and Prinz, F. B., “A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading.” J. Power Sources, 109, 483–493 (2002).
    86 Qi, Z. and Kaufman, A., “Enhancement of PEM fuel cell performance by steaming or boiling the electrode.” J. Power Sources, 109, 227–229 (2002).
    87 Qi, Z. and Kaufman, A., “Low Pt loading high performance cathodes for PEM fuel cells.” J. Power Sources, 113, 37–43 (2003).
    88 Saha, M. S., Gull´a, A. F., Allen, R. J., and Mukerjee, S., “High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition.” Electrochim. Acta, 51, 4680–4692 (2006).
    89 Wilson, M. S., “Membrane catalyst layer for fuel cells.” US Patent, No. 5,234,777 (1993).
    90 Wilson, M. S. and Gottesfeld, S., “Thin-film catalyst layers for polymer electrolyte fuel cell electrodes.” J. Appl. Electrochem., 22, 1–7 (1992).
    91 Chun, Y. G., Kim, C. S., Peck, D. H., and Shin, D. R., “Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes.” J. Power Sources, 71, 174–178 (1998).
    92 Sasikumar, G., Ihm, J. W., and Ryu, H., “Optimum Nafion content in PEM fuel cell electrodes.” Electrochim. Acta, 50, 601–605 (2004).
    93 Cavalca, C. A., Arps, J. H., and Murthy, M., “Fuel cell membrane electrode assemblies with improved power outputs and poison resistance.” US Patent, No. 6,300,000 (2001).
    94 Huang, K. L., Lai, Y. C., and Tsai, C. H., “Effects of sputtering parameters on the performance of electrodes fabricated for proton exchange membrane fuel cells.” J. Power Sources, 156, 224–231 (2006).
    95 Alvisi, M., Galtieri, G., Giorgi, L., Giorgi, R., Serra, E., and Signore, M. A., “Sputter deposition of Pt nanoclusters and thin films on PEM fuel cell electrodes.” Surf. Coat. Technol., 200, 1325–1329 (2005).
    96 Verbrugge, M. W., “Selective Electrodeposition of Catalyst within Membrane‐Electrode Structures.” J. Electrochem. Soc., 141, 46–53 (1994).
    97 Hogarth, M. P., Munk, J., Shukla, A. K., and Hamnett, A., “Performance of carbon-cloth bound porous-carbon electrodes containing an electrodeposited platinum catalyst towards the electrooxidation of methanol in sulphuric acid electrolyte.” J. Appl. Electrochem., 24, 85–88 (1994).
    98 Gloaguen, F., Leger, J. M., and Lamy, C., “Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates.” J. Electrochem. Soc., 27, 1052–1060 (1997).
    99 Schmidt, T. J., Paulus, U. A., Gasteiger, H. A., and Behm, R. J., “The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions.” J. Electroanal. Chem., 508, 41–47 (2001).
    100 Liu, Z., Gan, L. M., Hong, L., Chen, W., and Lee, J. Y., “Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells.” J. Power Sources, 139, 73–78 (2005).
    101 Sasaki, K., Wang, J. X., Balasubramanian, M., McBreen, J., Uribe, F., and Adzic, R. R., “Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability.” Electrochim. Acta, 49, 3873–3877 (2004).
    102 Ben´ıtez, R., Soler, J., and Daza, L., “Novel method for preparation of PEMFC electrodes by the electrospray technique.” J. Power Sources, 151, 108–113 (2005).
    103 Khan, M. R. and Lin, S. D., “Using Pt sols to prepare low Pt-loading electrodes for polymer electrolyte fuel cells.” J. Power Sources, 162, 186–191 (2006).
    104 Huang, T. H., Shen, H. L., Jao, T. C., Weng, F. B., and Su, A. “Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine.” Int. J. Hydrogen Energy, 37, 13872–13879 (2012).
    105 Wee, J. H., Lee, K. Y., and Kim, S. H., “Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems.” J. Power Sources, 165, 667–677 (2007).
    106 Puurunen, R. L., “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process.” J. Appl. Phys., 97, 121301–121301 (2005).
    107 http://www.picosun.com/en/home/
    108 Suntola, T. Handbook of Crystal Growth, Vol. 3, Part B: Growth Mechanisms and Dynamics, Elsevier, Amsterdam, (1994).
    109 Van Delft, J. A., Garcia-Alonso, D., and Kessels, W. M. M., “Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing.” Semicond. Sci. Technol., 27, 074002 (2012).
    110 Granneman, E. H. A., Fischer, P., Pierreux, D., Terhorst, H., and Zagwijn, P., “Batch ALD: Characteristics, comparison with single wafer ALD, and examples.” Surf. Coat. Technol., 201, 8899–8907 (2007).
    111 Vermeer, A., Roozeboom, F., Poodt, P., and G¨ortzen, R., “High throughput, low cost deposition of alumina passivation layers by spatial atomic layer deposition.” MRS Proc. 1323, c04-04 (2011).
    112 Poodt, P., Cameron, D. C., Dickey, E., George, S. M., Kuznetsov, V., Parsons, G. N., Roozeboom, F., Sundaram, G., and Vermeer, A., “Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition.” J. Vac. Sci. Technol., 30, 010802 (2012)
    113 Granneman, E. H. A., Vermont, P., Kuznetsov, V. I., Coolen, M., and Vanormelingen, K., 25th European Photovoltaic Solar Energy Conf. and Exhibition, (Valencia), (2010).
    114 Dickey, E. R. and Barrow, W. A., 52th Annual Technical Conf. Proc. on the Society of Vacuum Coaters (Santa Clara), 720–6 (2009).
    115 Beneq, < http://www.beneq.com > (last accessed: February 15, 2012)
    116 Martensson, P. and Carlsson, J. O., “Atomic Layer Epitaxy of Copper: Growth and Selectivity in the Cu(II)‐2,2,6,6‐tetramethyl‐3,5‐heptanedionate/H2 Process.” J. Electrochem. Soc., 145, 2926–2931 (1998).
    117 Hwang, C. S., “(Ba,Sr)TiO3 thin films for ultra large scale dynamic random access memory.: A review on the process integration.” Mater. Sci. Eng. B, 56, 178–190 (1998).
    118 Yoon, D. S. and Roh, J. S., “Thin Pt layer insertion into the Ru bottom electrode: effects on the surface morphology of a (Ba, Sr) TiO3 dielectric film and on the performance of the TiN barrier in the pt/Ru/TiN/p-Si/Si heterostructure.” Semicond. Sci. Technol., 17, 1048–1057 (2002).
    119 Aaltonen, T., Ritala, M., Sajavaara, T., Keinonen, J., and Leskela, M., “Atomic layer deposition of platinum thin films.” Chem. Mater., 15, 1924–1928 (2003).
    120 Aaltonen, T., Ritala, M., Tung, Y. L., Chi, Y., Arstila, K., Meinander, K., and Leskelä, M., “Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature.” J. Mater. Res., 19, 3353–3358 (2004).
    121 Liang, X., Zhou, Y., Li, J., and Weimer, A. W., “Reaction mechanism studies for platinum nanoparticle growth by atomic layer deposition.” J. Nanopart. Res., 13, 3781–3788 (2011).
    122 Yu, J., Matsuura, T., Yoshikawa, Y., Islam, M. N., and Hori, M., “In situ analysis of performance degradation of a PEMFC under nonsaturated humidification.” Electrochem. Solid-State Lett., 8, A156–A158 (2005).
    123 Yu, J. R., Matsuura, T., Yoshikawa, Y., Islam, M. N., and Hori, M., “Lifetime behavior of a PEM fuel cell with low humidification of feed stream.” Phys. Chem. Chem. Phys., 7, 373–378 (2005).
    124 Antolini, E., “Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells.” J. Mater. Sci., 38, 2995–3005 (2003).
    125 Mathias, M., Gasteiger, H., Makharia, R., Kocha, S., Fuller, T., and Pisco, J., Abstr. Pap. Am. Chem. Soc., 228, U653 (2004).
    126 Cheng, X., Chen, L., Peng, C., Chen, Z. W., Zhang, Y., and Fan, Q. B., “Catalyst microstructure examination of PEMFC membrane electrode assemblies vs. time.” J. Electrochem. Soc., 151, A48–A52 (2004).
    127 Xie, J., Wood, D. L., More, K. L., Atanassov, P., and Borup, R. L., “Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions .“ J. Electrochem. Soc., 152, A1011–A1020 (2005).
    128 Shao, Y., Yin, G., and Gao, Y., “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell.” J. Power Sources, 171, 558–566 (2007).
    129 Xie, J., Wood, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P., and Borup, R. L., “Durability of PEFCs at high humidity conditions.” J. Electrochem. Soc., 152, A104–A113 (2005).
    130 Colon-Mercado, H. R. and Popov, B. N., “Stability of platinum based alloy cathode catalysts in PEM fuel cells.” J. Power Sources, 155, 253–263 (2006).
    131 Shao, Y., Yin, G., Gao, Y., and Shi, P., “Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions.” J. Electrochem. Soc., 153, A1093-A1097 (2006).
    132 Huang, S. Y., Ganesan, P., and Popov, B. N., “Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells.” Appl. Catal. B: Environ., 96, 224–231 (2010).
    133 Stevens, D. A. and Dahn, J. R., “Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells.” Carbon, 43, 179–188 (2005).
    134 Baturina, O. A., Aubuchon, S. R., and Wynne, K. J., “Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers.” Chem. Mater., 18, 1498–1504 (2006).
    135 Qi, Z. G. and Buelte, S., “Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells.” J. Power Sources, 161, 1126–1132 (2006).
    136 Mathias, M. F., Makharia, R., Gasteiger, H. A., Conley, J. J., Fuller, T. J., Gittleman, C. J., Kocha, S. S., Miller, D. P., Mittelsteadt, C. K., Xie, T., Yan, S. G., and Yu, P. T., “Two fuel cell cars in every garage?” Electrochem. Soc. Interface, 14, 24-36 (2005).
    137 Protsailo, L., 2006 DOE Hydrogen Program Review, Arlington, VA, (2006).
    138 Borup, R., Davey, J., Wood, D., Garzon, F., and Inbody, M., VII. I. 3 PEM Fuel Cell Durability, DOE Hydrogen Program FY 2005 Progress Report, 1039–1045 (2005).
    139 Borup, R. L., Davey, J. R., Garzon, F. H., Wood, D. L., and Inbody, M. A., “PEM fuel cell electrocatalyst durability measurements.” J. Power Sources, 163, 76–81 (2006).
    140 Kundu, A., Jang, J. H., Gil, J. H., Jung, C. R., Lee, H. R., Kim, S. H., Ku, B., and Oh, Y. S., “Micro-fuel cells–current development and applications.” J. Power Sources, 170, 67–78 (2007).
    141 Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., and Wilkinson, D. P., “A review of anode catalysis in the direct methanol fuel cell.” J. Power Sources, 155, 95–110 (2006).
    142 Li, W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Sun, G., and Xin, Q., “Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell.” Carbon, 40, 791–794 (2002).
    143 Massoni, N., Beaumont-Martinent, A., and Laurent, J. Y., “Effect of an oxygen plasma treatment on the specific surface of platinum electrodeposits for fuel cells.” J. Power Sources, 166, 68–73 (2007).
    144 Buttner, M. and Oelhafen, P. “XPS study on the evaporation of gold submonolayers on carbon surfaces.” Surf. Sci., 600, 1170–1177 (2006).
    145 Sanlés-Sobrido, M., Pérez-Lorenzo, M., Rodríguez-González, B., Salgueiriño, V., and Correa-Duarte, M. A., “Highly active nanoreactors: nanomaterial encapsulation based on confined catalysis.” Angew. Chem. Int. Ed. 51, 3877–3882 (2012).
    146 Sanles-Sobrido, M., Correa-Duarte, M. A., Carregal-Romero, S., Rodríguez-González, B., Álvarez-Puebla, R. A., Hervés, P., and Liz-Marzán, L. M., “Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes.” Chem. Mater., 21, 1531–1535 (2009).
    147 Liu, C., Wang, C. C., Kei, C. C., Hsueh, Y. C., and Perng, T. P., “Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton‐exchange membrane fuel cells.” Small, 5, 1535–1538 (2009).
    148 Ago, H., Kugler, T., Cacialli, F., Salaneck, W. R., Shaffer, M. S. P., Windle, A. H., and Friend, R. H., “Work functions and surface functional groups of multiwall carbon nanotubes.” J. Phys. Chem. B, 103, 8116–8121 (1999).
    149 Diaz, J., Paolicelli, G., Ferrer, S., and Comin, F., “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films.” Phys. Rev., B 54, 8064–8069 (1996).
    150 Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C. “Chemical oxidation of multiwalled carbon nanotubes.” Carbon, 46, 833–840 (2008).
    151 Puurunen, R. L. and Vandervorst, W. “Island growth as a growth mode in atomic layer deposition: A phenomenological model.” J. Appl. Phys., 96, 7686–7695 (2004).
    152 Felten, A., Bittencourt, C., Pireaux, J. J., Van Lier, G., and Charlier, J. C., “Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments.” J. Appl. Phys., 98, 074308 (2005).
    153 Chan, K. Y., Ding, J., Ren, J., Cheng, S., and Tsang, K. Y., “Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells.” J. Mater. Chem., 14, 505–516 (2004).
    154 Taylor, E. J., Anderson, E. B., and Vilambi, N. R. K., “Preparation of high‐platinum‐utilization gas diffusion electrodes for proton‐exchange‐membrane fuel cells.” J. Electrochem. Soc., 139, L45–L46 (1992).
    155 Verbrugge, M. W., “Selective Electrodeposition of Catalyst within Membrane‐Electrode Structures.” J. Electrochem. Soc., 141, 46–53 (1994).
    156 Cha, S. Y. and Lee, W. M., “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface.” J. Electrochem. Soc., 146, 4055–4060 (1999).
    157 Hirano, S., Kim, J., and Srinivasan, S., “High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes.” Electrochim. Acta, 42, 1587–1593 (1997).
    158 Haug, A. T., White, R. E., Weidner, J. W., Huang, W., Shi, S., Stoner, T., and Rana, N., “Increasing proton exchange membrane fuel cell catalyst effectiveness through sputter deposition.” J. Electrochem. Soc., 149, A280–A287 (2002).
    159 Cunningham, N., Irissou, E., Lefèvre, M., Denis, M. C., Guay, D., and Dodelet, J. P., “PEMFC anode with very low Pt loadings using pulsed laser deposition.” Electrochem. Solid-State Lett., 6, A125–A128 (2003).
    160 Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, (1956).
    161 Gasteiger, H. A., Panels, J. E., and Yan, S. G., “Dependence of PEM fuel cell performance on catalyst loading.” J. Power Sources, 127, 162–171 (2004).
    162 Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., and Xin, Q., “Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells.” J. Phys. Chem. B, 107, 6292–6299 (2003).
    163 Alcaide, F., Álvarez, G., Miguel, O., Lázaro, M. J., Moliner, R., López-Cudero, A., Solla-Gullón, J., Herrero, E., and Aldaz, A., “Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells.” Electrochem. Commun., 11, 1081–1084 (2009).
    164 Guha, A., Zawodzinski Jr., T. A., and Schiraldi, D. A., “Evaluation of electrochemical performance for surface-modified carbons as catalyst support in polymer electrolyte membrane (PEM) fuel cells.” J. Power Sources, 172, 530–541 (2007).
    165 Liu, S. J., Huang, C. H., Huang, C. K., and Hwang, W. S., “Chelating agent assisted microwave synthesis of carbon supported Pt nanoparticles for low temperature polymer electrolyte fuel cells.” Electrochem. Commun., 11, 1792–1795 (2009).
    166 Calvillo, L., Gangeri, M., Perathoner, S., Centi, G., Moliner, R., and Lázaro, M. J., “Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers.” J. Power Sources, 192, 144–150 (2009).
    167 Saha, M. S., Li, R., and Sun, X., “High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells.” J. Power Sources, 177, 314–322 (2008).
    168 Natarajan, S. K. and Hamelin, J., “High-performance anode for Polymer Electrolyte Membrane Fuel Cells by multiple-layer Pt sputter deposition.” J. Power Sources, 195, 7574–7577 (2010).
    169 Reddy, A. L. M., Shaijumon, M. M., Rajalakshmi, N., and Ramaprabhu, S., “Performance of proton exchange membrane fuel cells using Pt/MWNT–Pt/C composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells.” J. Fuel Cell Sci. Technol., 7, 021001–021007 (2010).
    170 Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., and Wilkinson, D. P. J. “A review of anode catalysis in the direct methanol fuel cell.” J. Power Sources, 155, 95–110 (2006).
    171 Zhang, G., Sun, S., Ionescu, M. I., Liu, H., Zhong, Y., Li, R., and Sun, X., “Controlled growth/patterning of Ni nanohoneycombs on various desired substrates.” Langmuir, 26, 4346–4350 (2010).
    172 Pozio, A., De Francesco, M., Cemmi, A., Cardellini, F., and Giorgi, L., “Comparison of high surface Pt/C catalysts by cyclic voltammetry.” J. Power Sources, 105, 13–19 (2002).
    173 Bezerra, C. W. B., Zhang, L., Liu, H., Lee, K., Marques, A. L. B., Marques, E. P., Wang, H., and Zhang. J., “A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction.” J. Power Sources, 173, 891–908 (2007).
    174 Tsuchiya, H. and Kobayashi, O., “Mass production cost of PEM fuel cell by learning curve.” Int. J. Hydrogen Energy, 29, 985–990 (2004).
    175 Kinoshita, K., Electrochemical Oxygen Technology, John Wiley & Sons, New York, (1992).
    176 Avasarala, B., Moore, R., and Haldar, P., “Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions.” Electrochim Acta, 55, 4765–4771, (2010).
    177 Kangasniemi, K. H., Condit, D. A., and Jarvi, T. D., “Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions.” J Electrochem. Soc., 151, E125–E132 (2004).
    178 Chai, G. S., Yoon, S. B., Yu, J. S., Choi, J. H., and Sung, Y. E., “Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell.” J. Phys. Chem. B, 108, 7074–7079 (2004).
    179 Su, F., Zhao, X. S., Wang, Y., Zeng, J., Zhou, Z., and Lee, J. Y., “Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications.” J. Phys. Chem. B, 109, 20200–20206 (2005).
    180 Memioğlu, F., Bayrakçeken, A., Öznülüer, T., and Ak, M., “Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications.” Int. J. Hydrogen Energy, 37, 16673–16679 (2012).
    181 Saha, N. C. and Tompkins, H. G., “Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study.” J. Appl. Phys., 72, 3072–3079 (1992).
    182 Lu, F. H. and Chen, H. Y., “Characterization of titanium nitride films deposited by cathodic arc plasma technique on copper substrates.” Surf. Coat. Technol., 130, 290–296 (2000).
    183 Hsueh, Y. C., Wang, C. C., Kei, C. C., Lin, Y. H., Liu, C., and Perng, T. P., “Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells.” J. Catal., 294, 63–68 (2012).
    184 Larminie, J. and Dicks, A., Fuel cell systems explained. (2nd ed.), Wiley, England, (2003).
    185 Cheng, N. C., Mu, S. C., Pan, M., and Edwards, P. P., “Improved lifetime of PEM fuel cell catalysts through polymer stabilization.” Electrochem. Commun. 11, 1610–1614 (2009).
    186 Roen, L. M., Paik, C. H., and Jarvi, T. D., “Electrocatalytic corrosion of carbon support in PEMFC cathodes.” Electrochem. Solid-State Lett., 7, A19–A22 (2004).
    187 Antolini, E., “Carbon supports for low-temperature fuel cell catalysts,” Appl. Catal. B: Environ., 88, 1-24 (2009).
    188 Liu, Z., Lin, X., Lee, J. Y., Zhang, W., Han, M., and Gan, L. M. “Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells,” Langmuir, 18, 4054-4060 (2002).
    189 Xie, J., Wood, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P., and Borup, R. L., “Durability of PEFCs at high humidity conditions.” J. Electrochem. Soc., 152, A104–A113 (2005).
    190 Stevens, D. A. and Dahn, J. R., “Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells.” Carbon, 43, 179–188 (2005).
    191 Gasteiger, H. A., Kocha, S. S., Sompalli, B. and Wagner, F. T., “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs.” Appl. Catal. B:Environ., 56, 9–35 (2005).
    192 Mathias, M. F., Makharia, R., Gasteiger, H. A., Conley, J. J., Fuller, T. J., Gittleman, C. J., Kocha, S. S., Miller, D. P., Mittelsteadt, C. K., Xie, T., Yan, S. G., and Yu, P. T., “Two fuel cell cars in every garage?” Electrochem. Soc. Interface, 14, 24–36 (2005).
    193 Borup, R., Davey, J., Wood, D., Garzon, F., and Inbody, M., VII. I. 3 PEM Fuel Cell Durability, DOE Hydrogen Program FY 2005 Progress Report, 1039–1045 (2005).
    194 Cheng, X., Chen, L., Peng, C., Chen, Z., Zhang, Y., and Fan, Q., “Catalyst microstructure examination of PEMFC membrane electrode assemblies vs. time.” J. Electrochem. Soc., 151, A48–A52 (2004).
    195 Shao, Y., Yin, G., Zhang, J., and Gao, Y., “Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution.” Electrochimica acta, 51, 5853–5857 (2006).
    196 Wang, X., Li, W., Chen, Z., Waje, M., and Yan, Y., “Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell.” J. Power Sources, 158, 154–159 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE