簡易檢索 / 詳目顯示

研究生: 陳韻如
Chen, Yun-Ru
論文名稱: 欖綠青蟳甲殼類升血糖荷爾蒙異構型結構與功能研究
Structural and Functional studies of Crustacean Hyperglycemic Hormone-like (CHH-L) Peptide from Mud crab Scylla Olivacea
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 蘇士哲
蕭乃文
黃維寧
李奇英
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 升血糖活性甲殼類升血糖荷爾蒙核磁共振光譜鈉鉀幫浦活性蛋白質三級結構
外文關鍵詞: hyperglycemic activity, crustacean hyperglycemic hormone, Na+/ K+-ATPase activity, NMR, protein solution structure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 欖綠青蟳 (Scylla olivacea) 中甲殼類升血糖荷爾蒙異構型蛋白質(Sco-CHH-L)是屬於甲殼類升血糖荷爾蒙家族之一成員,其蛋白質結構和生理功能及重要胺基酸調控功能未點位點尚未被證實。本篇研究利用核磁共振光譜技術解出此甲殼類升血糖荷爾蒙異構型蛋白質,進而探討其結構與功能之間的關聯性。 根據解析出的甲殼類升血糖荷爾蒙異構型蛋白質結構特徵與生化功能結果,提出N端及C端重要功能胺基酸位點。 生理功能研究顯示重組甲殼類升血糖荷爾蒙異構型蛋白質能增加腮組織中鈉鉀泵的活性。 並將甲殼類升血糖荷爾蒙異構型蛋白質進行點突變實驗建構出突變株進行體外鈉鉀泵的活性研究。結果顯示會影響鈉鉀泵的活性表現的胺基酸是位於蛋白質結構中π-helix區域和C端區域。本研究利用核磁共振光譜技術解出第一個 Type I甲殼類升血糖荷爾蒙家族中甲殼類升血糖荷爾蒙異構型蛋白質結構,功能研究發現甲殼類升血糖荷爾蒙異構型蛋白質主要是調控鈉鉀泵的活性,並發現其重要的功能胺基酸位點。


    The Scylla olivacea crustacean hyperglycemic hormone-like (Sco-CHH-L) peptide belongs to the crustacean hyperglycemic hormone (CHH) family, but its function, specific binding sites, and structure have not been reported. To explore the structure–function relationship of the Sco-CHH-L peptide, the solution structure of Sco-CHH-L was determined through heteronuclear three-dimensional nuclear magnetic resonance spectrometry in our study. Based on the tertiary structure and biochemical assay results, we propose functionally vital residues in the N and C termini of the Sco-CHH-L peptide derived from S. olivacea, the mud crab. Physiological function analysis showed that the recombinant Sco-CHH-L peptide increased Na+, K+-ATPase activity in the gill. To investigate biologically vital residues of the Sco-CHH-L peptide, both wild-type and point-mutated Sco-CHH-L peptides were constructed. The recombinant peptides were tested using an in-vivo Na+, K+-ATPase activity assay. The assay results indicated residues in π-helix region or C-terminus of Sco-CHH-L affected Na+, K+-ATPase activity. The function analysis results revealed that Sco-CHH-L from S. olivacea is involved in the stimulation of Na+, K+-ATPase activity in crustaceans. In this paper, we provide the first Type I CHH family solution structure, information on the functional importance of residues in Sco-CHH-L, and the effect on Na+-, K+-ATPase activity in crustaceans.

    Chapter I Introduction 6 Chapter II Experimental Procedures 12 2.1 Construction of Expression plasmids 13 2.2 Production of recombinant peptides 13 2.3 Animal maintenance and salinity transfer 16 2.4 RNA extraction, cDNA preparation and quantitative real-time PCR 16 2.5 Indirect ELISA for the quantitative analysis 17 2.6 Protein extraction from gill 19 2.7 Na+, K+-ATPase activity assay 19 2.8 Circular dichroism (CD) experiments 21 2.9 NMR spectroscopy and structure determination 21 2.10 Data and statistical analysis 23 2.11 Figures and Table 24 Chapter III Results 27 3.1 Protein sample preparation 28 3.2 The effect of osmotic stress in pericardial organ (PO) 29 3.3 Na+, K+-ATPase activity analyses of Sco-CHH-L and Sco-CHH in gill 30 3.4 Secondary structure of Sco-CHH-L at different pH environment 31 3.5 Resonance assignment and molecular structure of Sco-CHH-L 32 3.6 Functionally important residues of Sco-CHH-L 36 3.7 Figures and Tables 40 Chapter IV Discussion 68 APPENDIX A. Accession number 80 APPENDIX B. Resonance list of Sco-CHH-L 81 Reference 104

    1. Christie, A. E. (2008) Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. Gen Comp Endocrinol 157, 174-185
    2. Christie, A. E., Nolan, D. H., Garcia, Z. A., McCoole, M. D., Harmon, S. M., Congdon-Jones, B., Ohno, P., Hartline, N., Congdon, C. B., Baer, K. N., and Lenz, P. H. (2011) Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa. Gen Comp Endocrinol 170, 480-486
    3. Montagné, N., Desdevises, Y., Soyez, D., and Toullec, J.-Y. (2010) Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans. BMC Evolutionary Biology 10, 62
    4. Soyez, D. (1997) Occurrence and diversity of neuropeptides from the crustacean hyperglycemic hormone family in arthropods. A short review. Ann N Y Acad Sci 814, 319-323
    5. Keller, R. (1992) Crustacean neuropeptides: structures, functions and comparative aspects. Experientia 48, 439-448
    6. Kegel, G., Reichwein, B., Tensen, C. P., and Keller, R. (1991) Amino acid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, Orconectes limosus: emergence of a novel neuropeptide family. Peptides 12, 909-913
    7. Chen, S. H., Lin, C. Y., and Kuo, C. M. (2005) In silico analysis of crustacean hyperglycemic hormone family. Mar Biotechnol (NY) 7, 193-206
    8. de Kleijn, D. P., de Leeuw, E. P., van den Berg, M. C., Martens, G. J., and van Herp, F. (1995) Cloning and expression of two mRNAs encoding structurally different crustacean hyperglycemic hormone precursors in the lobster Homarus americanus. Biochim Biophys Acta 1260, 62-66
    9. McCowan, C., and Garb, J. E. (2014) Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression. Gene 536, 366-375
    10. Undheim, E. A., Grimm, L. L., Low, C. F., Morgenstern, D., Herzig, V., Zobel-Thropp, P., Pineda, S. S., Habib, R., Dziemborowicz, S., Fry, B. G., Nicholson, G. M., Binford, G. J., Mobli, M., and King, G. F. (2015) Weaponization of a Hormone: Convergent Recruitment of Hyperglycemic Hormone into the Venom of Arthropod Predators. Structure 23, 1283-1292
    11. Sun, P., Wu, F., Wen, M., Yang, X., Wang, C., Li, Y., He, S., Zhang, L., Zhang, Y., and Tian, C. (2015) A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit. Scientific reports 5, 13399
    12. Santos, E. A., and Keller, R. (1993) Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: Current perspectives. Comparative Biochemistry and Physiology Part A: Physiology 106, 405-411
    13. Chang, E. S., Chang, S. A., Beltz, B. S., and Kravitz, E. A. (1999) Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second roots. J Comp Neurol 414, 50-56
    14. Chang, E. S., Keller, R., and Chang, S. A. (1998) Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. Gen Comp Endocrinol 111, 359-366
    15. Lorenzon, S., Edomi, P., Giulianini, P. G., Mettulio, R., and Ferrero, E. A. (2004) Variation of crustacean hyperglycemic hormone (cHH) level in the eyestalk and haemolymph of the shrimp Palaemon elegans following stress. J Exp Biol 207, 4205-4213
    16. Webster, S. (1996) Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. J Exp Biol 199, 1579-1585
    17. Zou, H. S., Juan, C. C., Chen, S. C., Wang, H. Y., and Lee, C. Y. (2003) Dopaminergic regulation of crustacean hyperglycemic hormone and glucose levels in the hemolymph of the crayfish Procambarus clarkii. J Exp Zool A Comp Exp Biol 298, 44-52
    18. Chang, C. C., Tsai, K. W., Hsiao, N. W., Chang, C. Y., Lin, C. L., Watson, R. D., and Lee, C. Y. (2010) Structural and functional comparisons and production of recombinant crustacean hyperglycemic hormone (CHH) and CHH-like peptides from the mud crab Scylla olivacea. Gen Comp Endocrinol 167, 68-76
    19. Chang, E. S., Prestwich, G. D., and Bruce, M. J. (1990) Amino acid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, Homarus americanus. Biochem Biophys Res Commun 171, 818-826
    20. Chung, J. S., Dircksen, H., and Webster, S. G. (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci U S A 96, 13103-13107
    21. Dircksen, H., Bocking, D., Heyn, U., Mandel, C., Chung, J. S., Baggerman, G., Verhaert, P., Daufeldt, S., Plosch, T., Jaros, P. P., Waelkens, E., Keller, R., and Webster, S. G. (2001) Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J 356, 159-170
    22. Khayat, M., Yang, W., Aida, K., Nagasawa, H., Tietz, A., Funkenstein, B., and Lubzens, E. (1998) Hyperglycaemic hormones inhibit protein and mRNA synthesis in in vitro-incubated ovarian fragments of the marine shrimp Penaeus semisulcatus. Gen Comp Endocrinol 110, 307-318
    23. Spanings-Pierrot, C., Soyez, D., Van Herp, F., Gompel, M., Skaret, G., Grousset, E., and Charmantier, G. (2000) Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen Comp Endocrinol 119, 340-350
    24. Yasuda, A., Yasuda, Y., Fujita, T., and Naya, Y. (1994) Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions. Gen Comp Endocrinol 95, 387-398
    25. Fanjul-Moles, M. L. (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 142, 390-400
    26. De Kleijn, D. P., and Van Herp, F. (1995) Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 112, 573-579
    27. Lacombe, C., Greve, P., and Martin, G. (1999) Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides 33, 71-80
    28. Audsley, N., McIntosh, C., and Phillips, J. E. (1992) Isolation of a neuropeptide from locust corpus cardiacum which influences ileal transport. J Exp Biol 173, 261-274
    29. Dai, L., Zitnan, D., and Adams, M. E. (2007) Strategic expression of ion transport peptide gene products in central and peripheral neurons of insects. J Comp Neurol 500, 353-367
    30. Endo, H., Nagasawa, H., and Watanabe, T. (2000) Isolation of a cDNA encoding a CHH-family peptide from the silkworm Bombyx mori. Insect Biochem Mol Biol 30, 355-361
    31. Meredith, J., Ring, M., Macins, A., Marschall, J., Cheng, N. N., Theilmann, D., Brock, H. W., and Phillips, J. E. (1996) Locust ion transport peptide (ITP): primary structure, cDNA and expression in a baculovirus system. J Exp Biol 199, 1053-1061
    32. Chen, S. H., Lin, C. Y., and Kuo, C. M. (2004) Cloning of two crustacean hyperglycemic hormone isoforms in freshwater giant prawn (Macrobrachium rosenbergii): evidence of alternative splicing. Mar Biotechnol (NY) 6, 83-94
    33. Tiu, S. H., He, J. G., and Chan, S. M. (2007) The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation. Gene 396, 226-235
    34. Toullec, J. Y., Serrano, L., Lopez, P., Soyez, D., and Spanings-Pierrot, C. (2006) The crustacean hyperglycemic hormones from an euryhaline crab Pachygrapsus marmoratus and a fresh water crab Potamon ibericum: eyestalk and pericardial isoforms. Peptides 27, 1269-1280
    35. Lee, K. J., Doran, R. M., and Mykles, D. L. (2007) Crustacean hyperglycemic hormone from the tropical land crab, Gecarcinus lateralis: cloning, isoforms, and tissue expression. Gen Comp Endocrinol 154, 174-183
    36. Chung, J. S., and Zmora, N. (2008) Functional studies of crustacean hyperglycemic hormones (CHHs) of the blue crab, Callinectes sapidus - the expression and release of CHH in eyestalk and pericardial organ in response to environmental stress. FEBS J 275, 693-704
    37. Tsai, K. W., Chang, S. J., Wu, H. J., Shih, H. Y., Chen, C. H., and Lee, C. Y. (2008) Molecular cloning and differential expression pattern of two structural variants of the crustacean hyperglycemic hormone family from the mud crab Scylla olivacea. Gen Comp Endocrinol 159, 16-25
    38. Ohira, T., Tsutsui, N., Nagasawa, H., and Wilder, M. N. (2006) Preparation of two recombinant crustacean hyperglycemic hormones from the giant freshwater prawn, Macrobrachium rosenbergii, and their hyperglycemic activities. Zoological science 23, 383-391
    39. Lucu, C., and Flik, G. (1999) Na+-K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. Am J Physiol 276, R490-499
    40. Siebers, D., Leweck, K., Markus, H., and Winkler, A. (1982) Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Marine Biology 69, 37-43
    41. Blanco, G., and Mercer, R. W. (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology-Renal Physiology 275, F633-F650
    42. Schägger, H., and Von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry 166, 368-379
    43. Chung, K. F., and Lin, H. C. (2006) Osmoregulation and Na,K-ATPase expression in osmoregulatory organs of Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 144, 48-57
    44. Lin, L.-J., Chen, Y.-J., Chang, Y.-S., and Lee, C.-Y. (2013) Neuroendocrine responses of a crustacean host to viral infection: effects of infection of white spot syndrome virus on the expression and release of crustacean hyperglycemic hormone in the crayfish Procambarus clarkii. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 164, 327-332
    45. Tsai, J. R., and Lin, H. C. (2007) V-type H+-ATPase and Na+,K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation. J Exp Biol 210, 620-627
    46. Holliday, C. W. (1985) Salinity‐induced changes in gill Na, K‐ATPase activity in the mud fiddler crab, Uca pugnax. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 233, 199-208
    47. Peterson, G. L. (1978) A simplified method for analysis of inorganic phosphate in the presence of interfering substances. Analytical Biochemistry 84, 164-172
    48. Goddard, T. D., and Kneller, D. G. (2008) SPARKY 3. University of California, San Francisco
    49. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-921
    50. Oostenbrink, C., Villa, A., Mark, A. E., and van Gunsteren, W. F. (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. Journal of computational chemistry 25, 1656-1676
    51. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. Journal of applied crystallography 26, 283-291
    52. Whitmore, L., and Wallace, B. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic acids research 32, W668-W673
    53. Wuthrich, K. (1986) NMR of proteins and nucleic acids.
    54. Katayama, H., Nagata, K., Ohira, T., Yumoto, F., Tanokura, M., and Nagasawa, H. (2003) The solution structure of molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus. J Biol Chem 278, 9620-9623
    55. Golovanov, A. P., Hautbergue, G. M., Wilson, S. A., and Lian, L. Y. (2004) A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126, 8933-8939
    56. Tsutsui, N., Sakamoto, T., Arisaka, F., Tanokura, M., Nagasawa, H., and Nagata, K. (2016) Crystal structure of a crustacean hyperglycemic hormone (CHH) precursor suggests structural variety in the C-terminal regions of CHH superfamily members. FEBS J 283, 4325-4339
    57. Holm, L., and Rosenstrom, P. (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-549
    58. Zhu, Z. Y., and Karlin, S. (1996) Clusters of charged residues in protein three-dimensional structures. Proceedings of the National Academy of Sciences of the United States of America 93, 8350-8355
    59. Liu, C. J., Huang, S. S., Toullec, J. Y., Chang, C. Y., Chen, Y. R., Huang, W. S., and Lee, C. Y. (2015) Functional Assessment of Residues in the Amino- and Carboxyl-Termini of Crustacean Hyperglycemic Hormone (CHH) in the Mud Crab Scylla olivacea Using Point-Mutated Peptides. PLoS One 10, e0134983
    60. Wang, Y. J., Zhao, Y., Meredith, J., Phillips, J. E., Theilmann, D. A., and Brock, H. W. (2000) Mutational analysis of the C-terminus in ion transport peptide (ITP) expressed in Drosophila Kc1 cells. Arch Insect Biochem Physiol 45, 129-138
    61. Zhao, Y., Meredith, J., Brock, H. W., and Phillips, J. E. (2005) Mutational analysis of the N-terminus in Schistocerca gregaria ion-transport peptide expressed in Drosophila Kc1 cells. Arch Insect Biochem Physiol 58, 27-38
    62. Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. Journal of molecular graphics 14, 51-55, 29-32
    63. The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC.
    64. Chung, J. S., and Webster, S. G. (2006) Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas: a possible osmoregulatory role. Gen Comp Endocrinol 147, 206-213
    65. Lucu, Č., and Towle, D. W. (2003) Na++K+-ATPase in gills of aquatic crustacea. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 135, 195-214
    66. Henry, R. P., Garrelts, E. E., McCarty, M. M., and Towle, D. W. (2002) Differential induction of branchial carbonic anhydrase and NA(+)/K(+) ATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. J Exp Zool 292, 595-603
    67. Neufield, G., Holliday, C., and Prichard, J. (1980) Salinity adaptation of gill Na, K-ATPase in the blue crab, Callinectes sapidius. J. exp. Zool 211, 215-224
    68. Lin, H. C., Su, Y. C., and Su, S. H. (2002) A comparative study of osmoregulation in four fiddler crabs (Ocypodidae: Uca). Zoological science 19, 643-650
    69. Low, B. W., and Baybutt, R. B. (1952) THE π HELIX—A HYDROGEN BONDED CONFIGURATION OF THE POLYPEPTIDE CHAIN. Journal of the American Chemical Society 74, 5806-5807
    70. Fodje, M. N., and Al-Karadaghi, S. (2002) Occurrence, conformational features and amino acid propensities for the π-helix. Protein Engineering, Design and Selection 15, 353-358
    71. Cartailler, J.-P., and Luecke, H. (2004) Structural and Functional Characterization of π Bulges and Other Short Intrahelical Deformations. Structure 12, 133-144
    72. Prasun, K., and Manju, B. (2015) Dissecting π-helices: sequence, structure and function. The FEBS Journal 282, 4415-4432
    73. Weaver, T. M. (2000) The pi-helix translates structure into function. Protein Science : A Publication of the Protein Society 9, 201-206

    QR CODE