簡易檢索 / 詳目顯示

研究生: 吳煥婷
Wu, Huan-Ting
論文名稱: 功能化磁性奈米探針應用於目標分子純化與偵測
Functionalized Magnetic Nanoparticle as Affinity Probe for Target Molecule Purification and Detection
指導教授: 林俊成
Lin, Chun-Cheng
陳玉如
Chen, Yu-Ju
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 160
中文關鍵詞: 磁性奈米粒子磷酸化胜肽蛋白質體學
外文關鍵詞: magnetic nanoparticle, phosphopeptide, proteomics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性奈米粒子為目前廣泛的運用於生物學研究熱門材料之一,因其高粒子總表面積對體積比的優勢,可以在粒子表面產生較高密度的親和官能基修飾,而能提升分子間的交互作用力。此外利用磁性易分離的優勢,將氧化鐵磁性奈米粒子進行表面修飾,並結合生物分子特有的專一辨識性,此功能化奈米粒子可以有效的應用在生物分離方面。在本論文中,將發展表面功能化修飾的氧化鐵奈米粒子,並運用於目標分子的純化與偵測。
    利用磁性奈米粒子表面覆蓋聚乙二醇,並同時修飾良好的金屬離子螯和試劑nitrilotriacetic acid為親和性探針,經由調控反應最佳化的條件,提供磷酸蛋白質萃取與純化另一種更快速且互補於現今的方法。除了對於低濃度的胜肽樣品具有良好的純化效率之外,在較複雜的生物細胞的純化,亦能同時針對單磷酸化胜肽與多磷酸化胜肽進行萃取純化。實驗結果證實我們所發展的磁性奈米探針不僅能和現今常用的方法互補,亦能提供較高比例的多磷酸化純化效率。
    另外,亦採用氟化物進行奈米粒子表面覆蓋,以及利用不同的表面修飾方法如CuAAC和疏水性長碳鏈鑲嵌而將nitrilotriacetic acid固化於表面形成親和探針,並探討其在磷酸化胜肽純化時的不同效率。最後更將亦能做為良好的金屬離子螯合試劑的di-pyridine化合物,固化於磁性奈米粒子表面,藉由與不同的金屬的親和作用力,表面功能化修飾的氧化鐵奈米粒子能同時達到磷酸化胜肽的純化,並幫助微量金屬的偵測提升其偵測效率。


    Magnetic nanoparticle (MNP) has emerged as a promising new material in biological applications. Due to the high surface area to volume ratio, the high surface ligand density of MNP provides significant enhancement of interaction affinity. Furthermore, the unique magnetic property of MNP facilitates the rapid separation by simple magnetic separation without the need of centrifugation. In this thesis, diverse functionalized MNP have been developed and applied on phosphopeptide enrichment and metal ion detection.
    We developed a surface-blocked nanoprobe-based immobilized metal ion affinity chromatography (NB-IMAC) method for enhanced purification specificity and enrichment of multiply phosphorylated peptides. Titanium (IV) ion charged nitrilotriacetic acid-conjugated MNP (Ti4+□NTA@MNP) showed unbiased extraction of phosphorylated peptides from diluted β-casein (2×10-10 M). By blocking MNP surface with low molecular weight polyethylene glycol and controlling pH and concentration of acetic acid of loading buffers, the developed NB-IMAC allowed rapid and specific one-step enrichment. Compared to the magnetic micro-sized particle (MMP, 2-10 □m), the NB-IMAC identified more phosphopeptides as well as higher percentage of multiply phosphorylated peptides (31%) on proteome scale. Furthermore, NB-IMAC complements chromatography-based IMAC and TiO2 method.
    The MNP surface was also functionalized with fluorous compounds (by amide bond formation), trivalent-NTA (by CuAAC reaction) and lipid-NTA (by hydrophobic interaction), respectively. Furthermore, di-pyridine compound, a good metal chelator, was also immobilized on the MNP surface. The phosphopeptide enrichment of the resulting MNPs was investigated. All of them, the NTA-C18@MNP (by hydrophobic interaction) has shown the best efficiency of low abundant phosphopeptide enrichment (2×10-10 M, α- and β-casein). Besides, the tri-NTA@MNP (by CuAAC reaction) and NTA-C18@MNP provide the similar potential for phosphopeptide enrichment form more complex mixture (α- and β-casein mixed with BSA, the molar ratio is 1:1:50).
    As a good metal chelator, the NTA@MNP and di-Py@MNP, immobized with different metal ions, would show their potential in phosphopeptide enrichment with complementary result. Besides, both of them would improve the metal ion detection efficiency through the strong interaction between the chelator with metal ions.
    Owing to the high sensitivity and specificity of MNPs, functionalized MNPs provide a rapid, effective, and specific platform for target molecule, such as phosphopeptides and trace metal ions purification. In this dissertation, through appropriate surface modification, MNPs present excellent performance in various target molecule extractions and detection.

    目錄 中文摘要................................................................................................I Abstract..................................................................................................II 目錄....................................................................................................... IV 圖目錄............................................................................................... VIII 表目錄....................................................................................................XII 流程目錄...............................................................................................XIII 縮寫表.................................................................................................XIV 第一章 緒論 1.1 奈米材料..................................................................................1 1.2 氧化鐵磁性奈米粒子...............................................................3 1.2.1氧化鐵磁性奈米粒子的製備.........................................5 1.2.2氧化鐵磁性奈米粒子表面修飾....................................8 1.3奈米探針結合親和性質譜分析平台(NBAMS)質譜技術........13 1.3.1 質譜技術........................................................................13 1.3.2 親和質譜法(Affinity Mass Spectrometry)………...………..15 1.4 磷酸質體學……………………………………………..………….19 1.4.1 蛋白質磷酸化的重要性………………………………..…19 1.4.2 磷酸化胜肽純化方法…………………………………..…..21 1.5 奈米粒子於IMAC的應用……………………………………...….25 1.5.1 氧化鐵磁性奈米粒子表面包覆金屬氧化物………………26 1.5.2 氧化鐵磁性奈米粒子應用於IMAC….……………………27 1.6 微量金屬離子的抓取與測定……………..……………………….29 1.7 研究目的與動機………………………………..………………….31 第二章功能化磁性奈米探針的製備與鑑定之結果與討論.................33 2.1表面修飾功能化氧化鐵磁性奈米粒子的製備.........................33 2.1.1氧化鐵磁性奈米粒核的製備..........................................33 2.1.2氧化鐵磁性奈米粒子不同包覆表面的胺基修飾...............34 2.1.3 氧化鐵磁性奈米粒子表面親和探針的修飾........................37 2.1.4氧化鐵磁性奈米粒子表面修飾長碳鏈及其NTA的修飾.....39 2.1.5 氧化鐵磁性奈米粒子表面修飾三價(Trivalent)NTA……41 2.1.6 以RAFT聚合反應建構多價NTA奈米粒子……………51 2.1.7氧化鐵磁性奈米粒子表面修飾di-py為親和試劑…………53 2.2氧化鐵磁性奈米粒子表面功能化鑑定.........................................54 2.2.1超導量子干涉磁量儀..…………………..…………………..54 2.2.2奈米粒子表面官能基定性分析:富立葉轉換紅外線分析儀 (FT-IR)分析…………………………...…………………….55 2.2.3 功能化磁性奈米粒子粒徑大小之測定……………………60 2.2.4 磁性奈米粒子表面修飾胺基的定量………………………67 第三章奈米探針應用於目標分子純化與偵測之結果與討論……71 3.1 NTA@MNPPEG和NTA@MNPBSA抑制非專一吸附的比較.............71 3.2利用Ti4+-NTA@MNPPEG純化磷酸化胜肽專一性的調控………..72 3.3奈米探針Ti4+-NTA@MNPPEG於磷酸化胜肽純化的偵測極限…78 3.4奈米探針Ti4+-NTA@MNPPEG對胜肽樣品不同比例對純化多磷酸 化胜肽的影響..................................................................................81 3.5奈米探針Ti4+-NTA@MNPPEG、Fe3+-IMAC 和 TiO2的比較.........85 3.6奈米探針Ti4+-NTA@MNPPEG與微米探針Ti4+-NTA@MNPPEG於磷 酸化胜肽純化效率之比較................................................................89 3.7奈米粒子表面探針固化方式對於磷酸化胜肽純化效率的比較…91 3.7.1 非專一性吸附的抑制效應…………………………………91 3.7.2 緩衝溶液對磷酸化胜肽之純化效率的影響………………95 3.7.3低含量磷酸化胜肽樣品中的純化效率……………………99 3.8 不同金屬離子於磷酸化胜肽親和性純化之應用………………102 3.9 NTA@MNP和di-Py@MNP在金屬離子親和性結合之偵測效率 的應用....……..……………………………………..……………109 第四章 實驗部分……………………………………………………..113 4.1 藥品與器材……………………………………………………113 4.1.1 藥品………………………..………………………………113 4.1.2儀器器材……………………………………………………114 4.2 探針分子的化學合成……………………………………………115 4.3表面修飾磁性奈米粒子的製備…………………………………...125 4.3.1 製備氧化鐵磁性奈米粒子 (Fe3O4 MNP core) ………….125 4.3.2 製備胺基功能化磁性奈米粒子(NH2@MNP) …………...125 4.3.3表面修飾牛血清蛋白之胺基功能化磁性奈米粒子 (NH2@MNPBSA) ………..…………………………………126 4.3.4表面修飾聚乙二醇之胺基功能化磁性奈米粒子………..126 4.3.5 表面修飾聚全氟化合物之胺基功能化磁性奈米粒……..127 4.3.6 表面修飾NTA之奈米粒子製備………………………127 4.3.7 表面修飾C18之磁性奈米粒子(C18@MNP) …………128 4.3.8 表面修飾C18-NTA之磁性奈米粒子(NTA-C18@MNP). 128 4.3.9 di-Py@MNPPEG的製備…………………………….......128 4.3.10 表面修飾mono-N3@MNP…………………………….....129 4.3.11 表面修飾tri-N3@MNP……………………………........130 4.3.12利用CuAAC建構mono-NTA@MNP和tri-NTA@MNP..130 4.3.13 利用RAFT 建構RAFT-NTA@MNP...............................131 4.3.14 表面修飾NTA之磁性微米粒子的製備………………131 4.3.15表面修飾奈米粒子與微米粒子螯和金屬離子一般步驟..131 4.4奈米粒子性質分析………………….………….………….………132 4.4.1奈米粒子表面胺基定量………………….……...…………132 4.4.2 利用粒徑分析儀量測奈米粒子一般步驟……..…………132 4.4.3利用感應耦合電漿質譜分析儀分析表面金屬含量………133 4.5 磷酸化胜肽樣品的製備………………….………………………133 4.5.1 胜肽標準品的製備……………………….………………133 4.5.2 人體細胞(Human Raji B cells)樣品的製備與蛋白質水解 (Proteolysis) ………………….……………………………133 4.6磷酸化胜肽純化…………………………………………………134 4.6.1利用NTA奈米探針進行磷酸化胜肽標準品純化實驗之一般 步驟……………………………………..…………………134 4.6.2 利用di-Py@MNPPEG奈米探針進行細胞樣品磷酸化胜肽 純化實驗……………..………………………………….135 4.6.3 利用NTA奈米探針進行細胞樣品磷酸化胜肽純化實驗.135 4.6.4 利用Fe3+-MAC進行磷酸化胜肽純化……………………135 4.6.5 利用TiO2進行磷酸化胜肽純化………………………….136 4.6.6 樣品的除鹽與濃縮………………………………………..136 4.7 進行金屬離子偵測實驗之一般步驟…………………………….137 4.8 質譜分析技術………………….……………..…………………..137 4.8.1基質輔助雷射脫負游離法(MALDI-TOF MS Analysis)… 137 4.8.2 細胞樣品純化後的磷酸化胜肽以LC-MS/MS分析…….138 第五章 結論……………………………………………………..140 參考文獻………………………………………………………………142 附錄……………………………………………………………………158 化合物合成光譜………………………………………………………158 磷酸化胜肽片段………………………………………………………181

    參考文獻

    1. Tissue, B. M., Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 1998, 10, 2837-2845.
    2. Brus, L., Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. J. Phys. Chem. 1994, 98, 3575-3581.
    3. Wang, Y. Z.; Qiao, G. W.; Liu, X. D.; Ding, B. Z.; Hu, Z. Q., Electrical resistivity of nanocrystalline Fe-Cu-Si-B alloys obtained by crystallization of the amorphous alloy. Mater. Lett. 1993, 17, 152-154.
    4. Rupp, J.; Birringer, R., Enhanced specific-heat-capacity (cp) measurements (150-300 K) of nanometer-sized crystalline materials. Phys. Rev. B 1987, 36, 7888.
    5. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
    6. Chen, M.; Nikles, D. E., Synthesis, self-Assembly, and magnetic properties of FexCoyPt100-x-y Nanoparticles. Nano Lett. 2002, 2, 211-214.
    7. Henglein, A., Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861-1873.
    8. Ozin, G. A., Nanochemistry: Synthesis in diminishing dimensions. Adv. Mater. 1992, 4, 612-649.
    9. Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226-13239.
    10. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893-3946.
    11. Daniel, M.-C.; Astruc, D., Gold Nanoparticles:  assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293-346.
    12. Link, S. E.-S., M. A. , Int. Rev. Phy. Chem. 2000, 19, 409-453.
    13. Xu, K.; Xu, B., Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 2006, 941-949.
    14. Katz, E.; Willner, I., Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 2004, 43, 6042-6108.
    15. Rosi, N. L.; Mirkin, C. A., Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 1547-1562.
    16. Chien, Y. Y.; Jan, M. D.; Adak, A. K.; Tzeng, H. C.; Lin, Y. P.; Chen, Y. J.; Wang, K. T.; Chen, C. T.; Chen, C. C.; Lin, C. C., Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. ChemBioChem 2008, 9, 1100-1109.
    17. Sun, S.; Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204-8205.
    18. Park, S.-J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T., Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 2000, 122, 8581-8582.
    19. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Colloidal nanocrystal shape and size control: the case of cobalt. Science 2001, 291, 2115-2117.
    20. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.
    21. Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 2002, 124, 11480-11485.
    22. Black, C. T.; Murray, C. B.; Sandstrom, R. L.; Sun, S., Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 2000, 290, 1131-1134.
    23. Xu, C.; Sun, S., Monodisperse magnetic nanoparticles for biomedical applications. Polym. Int. 2007, 56, 821-826.
    24. Doyle, P. S.; Bibette, J.; Bancaud, A.; Viovy, J.-L., Self-assembled magnetic matrices for DNA separation chips. Science 2002, 295, 2237.
    25. Gu, H.; Ho, P.-L.; Tsang, K. W. T.; Wang, L.; Xu, B., Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow Concentration. J. Am. Chem. Soc. 2003, 125, 15702-15703.
    26. Gao, J.; Gu, H.; Xu, B., Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097-1107.
    27. Lewin, M.; Carlesso, N.; Tung, C.-H.; Tang, X.-W.; Cory, D.; Scadden, D. T.; Weissleder, R., Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotech. 2000, 18, 410-414.
    28. Yoon, T. J.; Kim, J. S.; Kim, B. G.; Yu, K. N.; Cho, M. H.; Lee, J. K., Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew. Chem. Int. Ed. 2005, 44, 1068-1071.
    29. Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
    30. Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.; Weissleder, R., Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 2003, 125, 10192-10193.
    31. Wu, W.; He, Q.; Jiang, C., Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397-415.
    32. Lu, A. H.; Salabas, E.; Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.
    33. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798-12801.
    34. Hu, X.; Yu, J. C.; Gong, J., Fast production of self-assembled hierarchical α-Fe2O3 nanoarchitectures. J. of Phys. Chem. C 2007, 111, 11180-11185.
    35. Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021.
    36. Mikhaylova, M.; Kim, D. K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M., Superparamagnetism of magnetite nanoparticles:  dependence on surface modification. Langmuir 2004, 20, 2472-2477.
    37. Koping-Hoggard, M.; Tubulekas, I.; Guan, H.; Edwards, K.; Nilsson, M.; Varum, K. M.; Artursson, P., Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 2001, 8, 1108-1121.
    38. Singh, H.; Laibinis, P. E.; Hatton, T. A., Rigid, Superparamagnetic chains of permanently linked beads coated with magnetic nanoparticles. Synthesis and rotational dynamics under applied magnetic fields. Langmuir 2005, 21, 11500-11509.
    39. Shan, G. B.; Xing, J. M.; Luo, M. F.; Liu, H. Z.; Chen, J. Y., Immobilization of pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol. Lett. 2003, 25, 1977-1981.
    40. Mikhaylova, M.; Kim, D. K.; Berry, C. C.; Zagorodni, A.; Toprak, M.; Curtis, A. S. G.; Muhammed, M., BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 2004, 16, 2344-2354.
    41. Nam, J.-M.; Stoeva, S. I.; Mirkin, C. A., Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 2004, 126, 5932-5933.
    42. Wu, W.; He, Q.; Chen, H.; Tang, J.; Nie, L, Sonochemical synthesis, structure and magnetic properties of air-stable Fe 3 O 4 / Au nanoparticles. Nanotechnol. 2007, 18, 145609-145616.
    43. Chen, C. T.; Chen, Y. C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2005, 77, 5912-5919.
    44. Li, Y.; Liu, Y.; Tang, J.; Lin, H.; Yao, N.; Shen, X.; Deng, C.; Yang, P.; Zhang, X., Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J. Chromatogr. A 2007, 1172, 57-71.
    45. Chen, W. J.; Tsai, P. J.; Chen, Y. C., Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 2008, 4, 485-491.
    46. Stöber, W. F., A.; Bohn, E. J. J. , Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
    47. Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett. 2002, 2, 183-186.
    48. Ulman, A., Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533-1554.
    49. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
    50. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299-2301.
    51. Hutchens, T. W.; Yip, T. T., New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993, 7, 576-580.
    52. Nelson, R. W.; Krone, J. R.; Bieber, A. L.; Williams, P., Mass spectrometric immunoassay. Anal. Chem. 1995, 67, 1153-1158.
    53. Brockman, A. H.; Orlando, R., New immobilization chemistry for probe affinity mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1688-1692.
    54. Brockman, A. H.; Orlando, R., Probe-immobilized affinity chromatography/mass spectrometry. Anal. Chem. 1995, 67, 4581-4585.
    55. Ching, J.; Voivodov, K. I.; Hutchens, T. W., Polymers as surface-based tethers with photolytic triggers enabling laser-induced release/desorption of covalently bound molecules. Bioconjug. Chem. 1996, 7, 525-528.
    56. Xu, S.; Li, Y.; Zou, H.; Qiu, J.; Guo, Z.; Guo, B., Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 6191-6195.
    57. Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
    58. Castellana, E. T.; Russell, D. H., Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett. 2007, 7, 3023-3025.
    59. Turney, K.; Drake, T. J.; Smith, J. E.; Tan, W.; Harrison, W. W., Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun. Mass Spectrom. 2004, 18, 2367-2374.
    60. Kong, X. L.; Huang, L. C. L.; Hsu, C. M.; Chen, W. H.; Han, C. C.; Chang, H. C., High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 2004, 77, 259-265.
    61. Huang, L. C. L.; Chang, H.-C., Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 2004, 20, 5879-5884.
    62. Chen, Y. J.; Chen, S. H.; Chien, Y. Y.; Chang, Y. W.; Liao, H. K.; Chang, C. Y.; Jan, M. D.; Wang, K. T.; Lin, C. C., Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem 2005, 6, 1169-1173.
    63. Lin, Y.-S.; Tsai, P.-J.; Weng, M.-F.; Chen, Y.-C., Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal. Chem. 2005, 77, 1753-1760.
    64. Ho, K. C.; Tsai, P. J.; Lin, Y. S.; Chen, Y. C., Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal. Chem. 2004, 76, 7162-7168.
    65. Huang, L. S.; Chien, Y. Y.; Chen, S. H.; Lin, P. C.; Wang, K. Y.; Chou, P. H.; Lin, C. C.; Chen, Y. J., Nanomaterials for cancer diagnosis, eds. 2007. 338-376.
    66. Lin, P.-C.; Tseng, M.-C.; Su, A.-K.; Chen, Y.-J.; Lin, C.-C., Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal. Chem. 2007, 79, 3401-3408.
    67. Hunter, T., Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995, 80, 225-236.
    68. Levene, P. A.; Alsberg, C. L., The cleavage products of vitellin. J. Biol. Chem. 1906, 2, 127-133.
    69. Hunter, T., Signaling--2000 and beyond. Cell 2000, 100, 113-127.
    70. Blume-Jensen, P.; Hunter, T., Oncogenic kinase signalling. Nature 2001, 411, 355-365.
    71. "Illustrated Information". Nobelprize.org. 20 Sep 2010 http://nobelprize.org/nobel_prizes/medicine/laureates/1992/illpres/illpres.html.
    72. Delom, F.; Chevet, E., Phosphoprotein analysis: from proteins to proteomes. Proteome Sci. 2006, 4-15.
    73. Schmidt, S. R.; Schweikart, F.; Andersson, M. E., Current methods for phosphoprotein isolation and enrichment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 849, 154-162.
    74. Collins, M. O.; Yu, L.; Choudhary, J. S., Analysis of protein phosphorylation on a proteome-scale. Proteomics 2007, 7, 2751-2768.
    75. Thingholm, T. E.; Jensen, O. N.; Larsen, M. R., Analytical strategies for phosphoproteomics. Proteomics 2009, 9, 1451-1468.
    76. Ludtke, A.; Buettner, J.; Wu, W.; Muchir, A.; Schroeter, A.; Zinn-Justin, S.; Spuler, S.; Schmidt, H. H.; Worman, H. J., Peroxisome proliferator-activated receptor-gamma C190S mutation causes partial lipodystrophy. J. Clin. Endocrinol. Metab. 2007, 92, 2248-2255.
    77. Steen, H.; Kuster, B.; Fernandez, M.; Pandey, A.; Mann, M., Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 2002, 277, 1031-1039.
    78. Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 1986, 154, 250-254.
    79. Posewitz, M. C.; Tempst, P., Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 1999, 71, 2883-2892.
    80. Thingholm, T. E.; Jensen, O. N.; Robinson, P. J.; Larsen, M. R., SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell. Proteomics 2008, 7, 661-671.
    81. Ndassa, Y. M.; Orsi, C.; Marto, J. A.; Chen, S.; Ross, M. M., Improved immobilized metal affinity chromatography for large-scale phosphoproteomics applications. J. Proteome Res. 2006, 5, 2789-2799.
    82. Dunn, J. D.; Reid, G. E.; Bruening, M. L., Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 2010, 29, 29-54.
    83. Kagedal, L.; Janson, J. C.; Ryden, L., Immobilized metal ion affinity chromatography, in protein purification: principles, high-resolution methods, and applications, second edition, J.-C. Janson and L. Rydén Eds., John-Wiley & Sons, Inc., New York, 1998, 311-342.
    84. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 2002, 20, 301-305.
    85. Moser, K.; White, F. M., Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res. 2006, 5, 98-104.
    86. Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y., Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem. 2005, 77, 5144-5154.
    87. Tsai, C. F.; Wang, Y. T.; Chen, Y. R.; Lai, C. Y.; Lin, P. Y.; Pan, K. T.; Chen, J. Y.; Khoo, K. H.; Chen, Y. J., Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J. Proteome Res. 2008, 7, 4058-4069.
    88. Thingholm, T. E.; Jensen, O. N.; Larsen, M. R., Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol. Biol. 2009, 527, 67-78, xi.
    89. Li, Y.; Xu, X.; Qi, D.; Deng, C.; Yang, P.; Zhang, X., Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J. Proteome Res. 2008, 7, 2526-2538.
    90. Sugiyama, N.; Masuda, T.; Shinoda, K.; Nakamura, A.; Tomita, M.; Ishihama, Y., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics 2007, 6, 1103-1109.
    91. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 2005, 4, 873-886.
    92. Jensen, S. S.; Larsen, M. R., Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom. 2007, 21, 3635-3645.
    93. Lin, H. Y.; Chen, C. T.; Chen, Y. C., Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Anal. Chem. 2006, 78, 6873-6878.
    94. Hu, L.; Zhou, H.; Li, Y.; Sun, S.; Guo, L.; Ye, M.; Tian, X.; Gu, J.; Yang, S.; Zou, H., Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal. Chem. 2009, 81, 94-104.
    95. Rainer, M.; Sonderegger, H.; Bakry, R.; Huck, C. W.; Morandell, S.; Huber, L. A.; Gjerde, D. T.; Bonn, G. K., Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Proteomics 2008, 8, 4593-4602.
    96. Chang, C. K.; Wu, C. C.; Wang, Y. S.; Chang, H. C., Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles. Anal. Chem. 2008, 80, 3791-3797.
    97. Li, Y.; Leng, T.; Lin, H.; Deng, C.; Xu, X.; Yao, N.; Yang, P.; Zhang, X., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res. 2007, 6, 4498-4510.
    98. Li, Y.; Wu, J.; Qi, D.; Xu, X.; Deng, C.; Yang, P.; Zhang, X., Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem. Commun. (Camb) 2008, 564-566.
    99. Li, Y.; Lin, H.; Deng, C.; Yang, P.; Zhang, X., Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Proteomics 2008, 8, 238-249.
    100. Lo, C. Y.; Chen, W. Y.; Chen, C. T.; Chen, Y. C., Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J. Proteome Res. 2007, 6, 887-893.
    101. Chen, C. T.; Chen, W. Y.; Tsai, P. J.; Chien, K. Y.; Yu, J. S.; Chen, Y. C., Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J. Proteome Res. 2007, 6, 316-325.
    102. Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C., Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519-7525.
    103. Tan, F.; Zhang, Y.; Mi, W.; Wang, J.; Wei, J.; Cai, Y.; Qian, X., Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J. Proteome Res. 2008, 7, 1078-1087.
    104. Zhao, L.; Wu, R.; Han, G.; Zhou, H.; Ren, L.; Tian, R.; Zou, H., The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. J. Am. Soc. Mass Spectrom. 2008, 19, 1176-1186.
    105. Pan, C.; Ye, M.; Liu, Y.; Feng, S.; Jiang, X.; Han, G.; Zhu, J.; Zou, H., Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. J. Proteome Res. 2006, 5, 3114-3124.
    106. Haas, K. L.; Franz, K. J., Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921-4960.
    107. Wilkins, P. C.; Wilkins, R. G., Inorganic Chemistry in Biology. Oxford University Press, 1997.
    108. Szpunar, J.; Lobinski, R., Species-selective analysis for metal-biomacromolecular complexes using hyphenated techniques. Pure Appl. Chem. 1999, 71, 899-918.
    109. Collins, R. N.; Onisko, B. C.; McLaughlin, M. J.; Merrington, G., Determination of metal-EDTA complexes in soil solution and plant xylem by ion chromatography-electrospray mass spectrometry. Environ. Sci. Technol. 2001, 35, 2589-2593.
    110. Hotta, H.; Mori, T.; Takahashi, A.; Kogure, Y.; Johno, K.; Umemura, T.; Tsunoda, K., Quantification of trace elements in natural samples by electrospray ionization mass spectrometry with a size-exclusion column based on the formation of metal-aminopolycarboxylate complexes. Anal. Chem. 2009, 81, 6357-6363.
    111. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145-2148.
    112. Wang, L.; Yang, Z.; Gao, J.; Xu, K.; Gu, H.; Zhang, B.; Zhang, X.; Xu, B., A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 2006, 128, 13358-13359.
    113. Faraji, M.; Yamini, Y.; Saleh, A.; Rezaee, M.; Ghambarian, M.; Hassani, R., A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta 2010, 659, 172-177.
    114. White, B. R.; Stackhouse, B. T.; Holcombe, J. A., Magnetic gamma-Fe2O3 nanoparticles coated with poly-L-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J. Hazard. Mater. 2009, 161, 848-853.
    115. Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B., Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 2008, 25, 3-8.
    116. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P., Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 1996, 8, 2209-2211.
    117. MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.
    118. Pale-Grosdemange, C.; Simon, E. S.; Prime, K. L.; Whitesides, G. M., Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2CH2)mOH on gold. J. Am. Chem. Soc. 1991, 113, 12-20.
    119. Hench, L. L., Biomaterials: An Interfacial Approach; Academic Press, 1982.
    120. Ko, K. S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 2005, 127, 13162-13163.
    121. Schmitt, L.; Dietrich, C.; Tampe, R., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces. J. Am. Chem. Soc. 1994, 116, 8485-8491.
    122. Chen, W.-Y.; Chen, Y.-C., Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads. Anal. Chem. 2007, 79, 2394-2401.
    123. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition−fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559-5562.
    124. Kirin, S. I.; Dubon, P.; Weyhermuller, T.; Bill, E.; Metzler-Nolte, N., Amino acid and peptide bioconjugates of copper(II) and zinc(II) complexes with a modified N,N-bis(2-picolyl)amine ligand. Inorg. Chem. 2005, 44, 5405-5415.
    125. Osei-Prempeh, G.; Lehmler, H.-J.; Rankin, S. E.; Knutson, B. L., Synthesis of fluoro-functionalized mesoporous silica and application to fluorophilic separations. Ind. Eng. Chem. Res. 2008, 47, 530-538.
    126. Ran, R.; Yu, Y.; Wan, T., Photoinitiated RAFT polymerization in the presence of trithiocarbonate. J. Appl. Polym. Sci. 2007, 105, 398-404.
    127. Banerjee, S. S.; Chen, D.-H., Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater. 2007, 19, 6345-6349.
    128. Yu, M. S.; Curran, D. P.; Nagashima, T., Increasing fluorous partition coefficients by solvent tuning. Org. Lett. 2005, 7, 3677-3680.
    129. Bruce, I. J.; Sen, T., Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 2005, 21, 7029-7035.
    130. Kyono, Y.; Sugiyama, N.; Imami, K.; Tomita, M.; Ishihama, Y., Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J. Proteome Res. 2008, 7, 4585-4593.
    131. Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B., Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem. 2008, 16, 5216-5231.
    132. Snyder, P. W.; Johannes, M. S.; Vogen, B. N.; Clark, R. L.; Toone, E. J., Biocatalytic microcontact printing. J. Org. Chem. 2007, 72, 7459-7461.
    133. Huang, Z.; Park, J. I.; Watson, D. S.; Hwang, P.; Szoka, F. C., Facile synthesis of multivalent nitrilotriacetic acid (NTA) and NTA conjugates for analytical and drug delivery applications. Bioconjugate Chem. 2006, 17, 1592-1600.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE