研究生: |
林正峰 |
---|---|
論文名稱: |
超音波風扇之設計與製作 Design and Construction of an Ultrasonic Fan |
指導教授: | 歐陽敏盛 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 薄盤軸推式超音波風扇 、有限元素法 、驅動連結 |
外文關鍵詞: | thin-disk shaft-driving type ultrasonic fan, 3LL-modal, finite element method, driving joint |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以薄盤軸推式超音波致動器來驅動市售風扇,利用有限元素法分析薄盤軸推模態,藉由改變薄盤振動片周界之幾何形狀分析其對軸推模態的影響,設計較佳軸推模態提供致動器的製作,並設計適當的驅動連結提高定子至轉子間的能量傳輸。
本研究所提的軸推模態(3LL-modal)致動器是利用薄盤振動片(直徑41 mm、厚度0.23 mm的蜂鳴片)對其周界施加三個相同長深度的缺口,缺口的分佈角度為110°-120°-130°,並在致動片中央以驅動螺釘將之固定於一基板上。三個相同長深度缺口的設計,使得致動片外緣束縛減少可增加內波環的高度。缺口不對稱分佈的設計,可使內波環的高度更加增強並形成大小不一依特定方向的振動。故藉由3LL-modal致動器的驅動可使立於驅動螺釘上的扇葉快速旋轉。
驅動連結的設計包含驅動接觸面、驅動螺釘的長度、致動器與基板間的連結長度。其中以驅動接觸面的設計,包含接觸圓直徑以及轉軸端球徑,對定子至轉子間能量傳遞的影響最大。
實驗結果證實,3LL-modal致動器可推動直徑75 mm的扇葉旋轉達2250 rpm,消耗功率僅約1.1 W,而直流風扇馬達,在同一扇葉同一轉速下,消耗功率為1.8 W。因此,本研究提出的3LL-modal致動器具有取代直流風扇馬達的能力,且在薄型風扇市場中具競爭潛力。
In this study, driving a fan by a thin-disk shaft-driving type ultrasonic actuator is presented. Shaft-driving modes are designed by changing the geometric shape of a thin-disk vibrator. They are analyzed by finite element method to figure out suitable geometric parameters to construct a new ultrasonic actuator. The driving joint is also well devised to promote the energy transfer from stator to fan rotor.
The proposed 3LL-modal actuator is constructed by a thin-disk vibrator (piezo buzzer element) with three same deep-depth notches, arranged in 110°-120°-130° along the border of the vibrator, and with a driving bolt fastened at vibrator’s center. With three same deep-depth notches, the boundary of the vibrator can be released and the inner deformed height can be increased. Furthermore, by arranging notches in an asymmetric distribution, the inner deformed height can thus be enhanced further in a specific direction. Accordingly, the fan can be spinning quickly upon the driving bolt by the 3LL-modal actuator.
The driving joint’s design involves the driving contact, the length of driving bolt, and the length between actuator and base plate. Among them, the driving contact’s design referring to the contact ring’s diameter and the end shaft’s radius affects crucially the transferred energy from stator to rotor.
Experiential results show that a fan blade with 75 mm diameter can be rotated up to 2250 rpm consumed about 1.1 W by the 3LL-modal actuator. Under the same blade and rotating speed, the power consumption of the DC motor is 1.8 W. Therefore, the proposed ultrasonic actuator demonstrates the ability to substitute for a DC fan motor and the potential to compete in thin-fan market.
[1] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993.
[2] S. Ueha and Y. Tomikawa, Ultrasonic Motors - Theory and Applications, Clarendon Press, Oxford, 1993.
[3] 楊明昌,指導教授 歐陽敏盛 博士,“超音波馬達設計與分析-軸推式” ,國
立清華大學工程與系統研究所碩士論文,1999。
[4] 陳明男,“缺口式薄盤超音波馬達之設計與分析”,國立清華大學工程與系統科學研究所碩士論文,2004。
[5] H.V. Barth, “Ultrasonic driven motor,” IBM Technical Disclosure Bulletin, 16. 2263, 1973.
[6] 許溢适,壓電/電歪致動器,文笙書局,台北,1995。
[7] T. Yamazaki, J. Hu, K. Nakamura and S. Ueha, “Trial construction of a nonconact ultrasonic motor with an ultrasonically levitated rotor ,”JPn. J. Appl., vol. 35,pp. 3286-3288, 1996.
[8] N. Guo and Cawley, “The Finite Element Analysis of the vibration Characteristics of Piezoelectric Discs,” Journal of Sound and Vibration, Vol. 159, pp. 115-138, 1992.
[9] J.W. Krome and J.Wallaschek, “Influence of piezoelectric actuator on the vibrations of stator of a traveling wave motor,” Proceedings of IEEE Ultrasonic Symposium, Vol. 1, pp. 413-416, 1995.
[10] L. Nicola and P. Massimo, “A piezoelectric motor using flexural vibration of a thin piezoelectric membrane,” IEEE Transactions on Ultrasonic, Ferroelectrics, and frequency control, 45(1). 23-29, Jan 1998.
[11] R . Carotenuto, N. Lamberti and M. Pappalardo, “A new low voltage piezoelectric micromotor based on stator precessional motion,” IEEE Transactions on Ultrasonic, Ferroelectrics, and frequency control, 45(5).1427-1435, Sept 1998.
[12] R. Carotenuto, N. Lamberti and M. Pappalardo, “A new linear piezoelectric actuator for low voltage and large displacement applications,” Sensor and Actuators, 72. 262-268, 1999.
[13] A. Iula, R. Carotenuto and M. Pappalardo, “A matrix model of the axle vibration of a piezoelectric motor,” Ultrasonic, 38(1-8). 41-45, March 2000.
[14] 蔡明祺,顛覆傳統的無聲馬達-超音波馬達,科學發展367期,2003。
[15] 吳朗,電子陶瓷-壓電,全欣科技,台北,1994。
[16] 鄭振東,超音波工程,全華科技,台北,1999。
[17] 鄭世裕,「壓電陶瓷」,陶瓷技術手冊,汪建民主編,粉末冶金協會,台北, 1994。
[18] J. Zelenka, Piezoelectric resonators and their applications, Elsevier, Amsterdam, 1986.
[19] Acoustic Component Div., http://www.obopro2.com/p/product0.htm
[20] Acoustic Component Div.,http://www.betacera.com.tw/product.htm
[21] 葉俊余,指導教授 歐陽敏盛 博士,“新型超音波馬達之設計分析與量測”,國立清華大學工程與系統研究所碩士論文,2000。
[22] 黃昱先,指導教授 歐陽敏盛 博士,“碟形超音波馬達之動態特性量測” ,國立清華大學工科系碩士論文,2003。