簡易檢索 / 詳目顯示

研究生: 楊宇航
論文名稱: 理論研究具雙軸負導磁率之平面超穎材料激發磁性表面耦合子
Theoretical Study of Excitation of Magnetic Surface Polariton by Planar Metamaterials with Negative Biaxial Permeability
指導教授: 嚴大任
口試委員: 果尚志
林鶴南
陳浩夫
潘犀靈
藍永強
蔡定平
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 156
中文關鍵詞: 磁性表面耦合子新穎材料表面電漿子負透磁率
外文關鍵詞: magnetic surface polariton, metamaterials, surface plasmon polariton, negative permeability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿子是由叢集電子震盪所產生的一種電磁反應,這種電子振盪是來自於電子與光子交互作用而形成.而從馬克思威爾方程式,我們可以合理地預測存在一種類似於表面電漿子的磁性表面耦合子.這種磁性表面耦合子是由磁子和光子交互作用而形成.就我們所知,磁性表面耦合子已被研究超過50年,它的基本理論也都被科學界提出.然而,經由實驗證明磁性表面耦合子的論文確很少看到.這個現象是由於自然界存在磁性材料的本質限制.基本上,磁性材料存在的頻段是在THz以下,導致實驗時所需的樣本必須足夠大,這造成製備樣本的困難.更重要的限制是,大部份磁性材料要能產生足夠大的磁性反應所必須的條件是要極低溫的環境(如antiferromagnet),有時甚至需要加上靜磁場的協助(如ferromagnet).由此可知,這些條件將使觀察磁性表面耦合子變得更不容易.近期學術研究發展了一種全新的人工材料.這種人工材料是由很多次波長大小的單位元件所構成,它允許了原本被自然界排除的電磁學現象,其中著名的實驗有反司乃耳定律,隱形電磁披風和人工材料界面.這種人工材料我們稱為新穎材料.新穎材料著名的特性在於我們可以藉由次波長單位元件的幾何結構來人工定義新穎材料的介電常數和透磁率.換句換說,我們不再受限於天然材料的限制.因此,藉由控制幾何結構我們可以人工地操縱新穎材料的電磁反應.本次論文研究重點將是設計嶄新的新穎材料,藉由此設計我們將宣稱一種人工表面磁性耦合子可存在於常溫,或是存在於無外加靜磁場的環境.我們將此種嶄新的新穎材料稱作平面雙軸新穎材料.此外,本次研究也理論導出表面磁性耦合子的一般性色散公式,此公式將可以幫助指引我們如何設計平面雙軸新穎材料的幾何結構.最後,我們預期人工磁性表面耦合子可以應用於生物感測器,光學天線,無線電力傳輸等等.


    The surface plasmon polaritons (SPPs) are well-known electromagnetic response that is collective electron oscillations, and are the coupling between electrons and photons. From Maxwell’s equations, it is reasonable to consider a magnetic analog – magnetic surface polaritons (MSPs). The MSPs are the coupling between magnons and photons. To our knowledge, the MSPs have been studying for 50 years, and their theory was well developed. However, only a few experiment of the MSPs were demonstrated. The reason mainly stems from that the magnetic response in naturally occurring medium exists at frequency below THz. Accordingly, we need a big sample that may make measurement of the MSPs difficult. Importantly, the strong magnetic response exists at sufficiently low temperature (i.e. antiferromagnet) or at applied static magnetic field (i.e. ferromagnet). In a consequence, these conditions inevitably make observation of the MSPs difficult. Recently, an artificial medium is rapidly developing. Such artificial medium is composed of subwavelength unit cells and allows a variety of unprecedented electromagnetic responses such as inverse Snell’s law, invisible electromagnetic cloak, and meta-surface. Nowadays, the artificial medium is termed as metamaterials. The magic of the metamaterials is that the constitutive parameters of metamaterials no longer depend on the inherent characteristics of atom or electrons of medium) but on the geometrical structure of unit cell. The property of geometrical structure will make electromagnetic response of metamaterials scalable, and hence the electromagnetic responses can be artificially tailored by designing geometrical structure. In our study, we will demonstrate the artificial MSPs to “live” at room temperature and at no applied static magnetic field, which can be realized by means of our designed metamaterials, and we call our design planar biaxial metamaterials (PBMM). In addition, we derive the general dispersion equation of the MSPs that guides us how to design the PBMM. We expect that the artificial MSPs are applicable to the biosensor, optical antenna, wireless energy transfer, and so on.

    Chapter 1 Introduction 13 1.1 Surface Polaritons 13 1.2 Simulation Method 17 1.3 Motivation 18 Chapter 2 Magnetic Surface Polariton 21 2.1 Introduction 21 2.2 Fundamental of Polaritons 22 2.3 General Dispersion Equation for Magnetic Surface Polaritons 25 2.4 Realization of MSPs mode by Magnetic Materials 28 2.4.1 A Pure Semi-infinite Ferromagnet 29 2.4.2 A Pure Semi-infinite Antiferromagnets 37 2.5. Realization of MSPs by Effective Medium 43 2.5.1 Semi-infinite Ferromagnetic Superlattices 45 2.5.2 Semi-infinite Antiferromagnetic Superlattices 48 2.5.3 Semi-infinite Metamaterials 56 Chapter 3 Metamaterials 58 3.1 Introduction 58 3.2 Split-Ring Resonator 60 3.3 Staple and Fishnet Structure 65 3.4 Surface Magnetic Polarition Mode of Metamaterials 68 3.4.1 A Semi-infinite Uniaxial Magnetic Metamaterials 68 3.4.2 One-dimensional Magnetic Photonic Crystal 71 Chapter 4 Simulation Method I --- Electromagnetic Solvers 75 4.1 Introduction of Electromagnetic Solver 75 4.1.1 HFSS 75 4.1.2 CST 75 4.1.3 COMSOL Multiphysics 76 4.1.4 What do we choose? 76 4.2 CST MWS 77 4.3 The Influence of Boundary Condition 86 Chapter 5 Simulation Method II --- Retrieval Method 89 5.1 Retrieval Method 89 5.1.1 Original Retrieval Method 90 5.1.2 Improved Retrieval Method --- Version 1 98 5.2 Graphical Retrieval Method --- version 2 101 5.3 Example 106 Chapter 6 Biaxial Negative Permeability Metamaterials 114 6.1 Motivation 114 6.2 Magnetic Surface Polariton 115 6.3 Planar Biaxial Magnetic Metamaterials (PBMM) 116 6.3.1 Structure 116 6.4 Mechanism of Magnetic Response of PBMM 124 6.5 Retrieval Result of PBMM 131 6.6 Simulated Demonstration of MSPs Mode 138 Chapter 7 Conclusion 145 Chapter 8 Future Work 146 References 147 Publication Lists 155

    1 Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442-453, doi:10.1038/nmat2162 (2008).
    2 Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641-648, doi:10.1038/nphoton.2007.223 (2007).
    3 Pincus, P. Propagation effects on ferromagnetic resonance in dielectric slabs. J. Appl. Phys. 33, 553-&, doi:10.1063/1.1702464 (1962).
    4 Damon, R. W. & Eshbach, J. R. Magnetic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308-320, doi:10.1016/0022-3697(61)90041-5 (1961).
    5 Oliveros, M. C., Almeida, N. S., Tilley, D. R., Thomas, J. & Camley, R. E. Magnetostatice modes and polaritons in antiferromagnetic nonmagnetic superlattices. J. Phys.-Condes. Matter 4, 8497-8510, doi:10.1088/0953-8984/4/44/011 (1992).
    6 Hartstei.A, Burstein, E., Maradudi.Aa, Brewer, R. & Wallis, R. F. Surface polaritons on semi-infinite gyromagnetic media. Journal of Physics C-Solid State Physics 6, 1266-1276, doi:10.1088/0022-3719/6/7/016 (1973).
    7 Mills, D. L. & Burstein, E. Polaritons - electromagnetic modes of media. Rep. Prog. Phys. 37, 817-926, doi:10.1088/0034-4885/37/7/001 (1974).
    8 Camley, R. E. & Mills, D. L. Surface-polaritons on uniaxial antiferromagnets. Phys. Rev. B 26, 1280-1287, doi:10.1103/PhysRevB.26.1280 (1982).
    9 Jensen, M. R. F., Parker, T. J., Abraha, K. & Tilley, D. R. Experimental-observation of magnetic surface-polaritons in FeF2 by attenuated total-reflection. Phys. Rev. Lett. 75, 3756-3759, doi:10.1103/PhysRevLett.75.3756 (1995).
    10 Camley, R. E., Cottam, M. G. & Tilley, D. R. Surface-polaritons in antiferromagnetic superlattices with ordering perpendicullar to the surface. Solid State Commun. 81, 571-574, doi:10.1016/0038-1098(92)90414-5 (1992).
    11 Wang, X. Z. & Tilley, D. R. Retarded modes of a lateral antiferromagnetic nonmagnetic superlattice. Phys. Rev. B 52, 13353-13357, doi:10.1103/PhysRevB.52.13353 (1995).
    12 Raj, N. & Tilley, D. R. Polariton and effective-medium theory of magnetic superlattices. Phys. Rev. B 36, 7003-7007, doi:10.1103/PhysRevB.36.7003 (1987).
    13 Almeida, N. S. & Mills, D. L. Effective-medium theory of long-wavelength spin-waves in magnetic superlattices. Phys. Rev. B 38, 6698-6710, doi:10.1103/PhysRevB.38.6698 (1988).
    14 Barnas, J. Spin-waves in superlattices .3. magnetic polaritons in the voigt configuration. J. Phys.-Condes. Matter 2, 7173-7180, doi:10.1088/0953-8984/2/34/010 (1990).
    15 Veselago, V. G. Electrodynamics of substances with simultaneously negative values of sigma and mu. Soviet Physics Uspekhi-Ussr 10, 509-&, doi:10.1070/PU1968v010n04ABEH003699 (1968).
    16 Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773-4776, doi:10.1103/PhysRevLett.76.4773 (1996).
    17 Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075-2084, doi:10.1109/22.798002 (1999).
    18 Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Low frequency plasmons in thin-wire structures. J. Phys.-Condes. Matter 10, 4785-4809, doi:10.1088/0953-8984/10/22/007 (1998).
    19 Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77-79, doi:10.1126/science.1058847 (2001).
    20 Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430-432, doi:10.1126/science.1139266 (2007).
    21 Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369-373, doi:10.1038/nature09776 (2011).
    22 Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980, doi:10.1126/science.1133628 (2006).
    23 Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537, doi:10.1126/science.1108759 (2005).
    24 Smolyaninov, II, Hung, Y. J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699-1701, doi:10.1126/science.1138746 (2007).
    25 Seddon, N. & Bearpark, T. Observation of the inverse Doppler effect. Science 302, 1537-1540, doi:10.1126/science.1089342 (2003).
    26 Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494-1496, doi:10.1126/science.1094025 (2004).
    27 Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351-1353, doi:10.1126/science.1105371 (2004).
    28 Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nat. Photonics 2, 351-354, doi:10.1038/nphoton.2008.82 (2008).
    29 Tanaka, K., Plum, E., Ou, J. Y., Uchino, T. & Zheludev, N. I. Multifold enhancement of quantum dot luminescence in pasmonic metamaterials. Phys. Rev. Lett. 105, doi:10.1103/PhysRevLett.105.227403 (2010).
    30 Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337, doi:10.1126/science.1210713 (2011).
    31 Ni, X. J., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427-427, doi:10.1126/science.1214686 (2012).
    32 Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426-431, doi:10.1038/nmat3292 (2012).
    33 Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932-4936, doi:10.1021/nl302516v (2012).
    34 Zhang, S. et al. Near-infrared double negative metamaterials. Opt. Express 13, 4922-4930, doi:10.1364/opex.13.004922 (2005).
    35 Zhang, S. et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett. 94, doi:10.1103/PhysRevLett.94.037402 (2005).
    36 Gollub, J. N., Smith, D. R., Vier, D. C., Perram, T. & Mock, J. J. Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability. Phys. Rev. B 71, doi:10.1103/PhysRevB.71.195402 (2005).
    37 Smith, D. R., Schultz, S., Markos, P. & Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, doi:10.1103/PhysRevB.65.195104 (2002).
    38 Chen, X. D., Grzegorczyk, T. M., Wu, B. I., Pacheco, J. & Kong, J. A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, doi:10.1103/PhysRevE.70.016608 (2004).
    39 Liu, S. Y., Lu, W. L., Lin, Z. F. & Chui, S. T. Molding reflection from metamaterials based on magnetic surface plasmons. Phys. Rev. B 84, doi:10.1103/PhysRevB.84.045425 (2011).
    40 ANSYS HFSS, <http://www.ansys.com> (
    41 CST Microwave Studio, <http://www.cst.com> (
    42 COMSOL Multiphysics, <http://www.comsol.com> (
    43 Smajic, J., Hafner, C., Raguin, L., Tavzarashvili, K. & Mishrikey, M. Comparison of numerical methods for the analysis of plasmonic structures. J. Comput. Theor. Nanosci. 6, 763-774, doi:10.1166/jctn.2009.1107 (2009).
    44 Hoffmann, J., Hafner, C., Leidenberger, P., Hesselbarth, J. & Burger, S. in Modeling Aspects in Optical Metrology Ii Vol. 7390 Proceedings of SPIE-The International Society for Optical Engineering (eds H. Bosse, B. Bodermann, & R. M. Silver) (Spie-Int Soc Optical Engineering, 2009).
    45 Plasmonic Nano Antennas Simulation with CST MICROWAVE STUDIO, <http://www.cst.com/Content/Applications/Article/Plasmonic+Nano+Antennas+Simulation+with+CST+MICROWAVE+STUDIO%26reg%3b> (
    46 Weiland, T. Discretization method for solution of Maxwells equations for 6-component fields. AEU-Int. J. Electron. Commun. 31, 116-120 (1977).
    47 Weiland, T. Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model.-Electron. Netw. Device Fields 9, 295-319, doi:10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8 (1996).
    48 Krietenstein, B. S., R.; Thoma, P.; Weiland, T. The Perfect Boundary Approximation technique facing the challenge of high precision field computation. Proc. of the XIX International Linear Accelerator Conference, 860~862 (1998).
    49 Houck, A. A., Brock, J. B. & Chuang, I. L. Experimental observations of a left-handed material that obeys Snell's law. Phys. Rev. Lett. 90, doi:10.1103/PhysRevLett.90.137401 (2003).
    50 Parazzoli, C. G., Greegor, R. B., Li, K., Koltenbah, B. E. C. & Tanielian, M. Experimental verification and simulation of negative index of refraction using Snell's law. Phys. Rev. Lett. 90, doi:10.1103/PhysRevLett.90.107401 (2003).
    51 Vier, D., Fredkin, D. R., Simic, A., Schultz, S. & Tanielian, M. Experimental confirmation of negative phase change in negative index material planar samples. Appl. Phys. Lett. 86, doi:10.1063/1.1947903 (2005).
    52 Zhou, J. F., Koschny, T., Zhang, L., Tuttle, G. & Soukoulis, C. M. Experimental demonstration of negative index of refraction. Appl. Phys. Lett. 88, doi:10.1063/1.2208264 (2006).
    53 Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, doi:10.1103/PhysRevLett.90.027402 (2003).
    54 Stockman, M. I. Spasers explained. Nat. Photonics 2, 327-329, doi:10.1038/nphoton.2008.85 (2008).
    55 Ingram, J. C., Nebesny, K. W. & Pemberton, J. E. Optical-constants of the noble-metals determined by reflection electron-energy loss spectroscopy. Appl. Surf. Sci. 44, 293-300, doi:10.1016/0169-4332(90)90086-f (1990).
    56 Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B, 4370, doi:10.1103/PhysRevB.6.4370 (1972).
    57 Han, J. G. Probing negative refractive index of metamaterials by terahertz time-domain spectroscopy. Opt. Express 16, 1354-1364, doi:10.1364/oe.16.001354 (2008).
    58 Lai, Y. J., Chen, C. K. & Yen, T. J. Creating negative refractive identity via single-dielectric resonators. Opt. Express 17, 12960-12970 (2009).
    59 Lai, Y. C., Chen, C. K., Yang, Y. H. & Yen, T. J. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators. Opt. Express 20, 2876-2880 (2012).
    60 Yang, T. C., Yang, Y. H. & Yen, T. J. An anisotropic negative refractive index medium operated at multiple-angle incidences. Opt. Express 17, 24189-24197 (2009).
    61 Chiang, Y. J. & Yen, T. J. A highly symmetric two-handed metamaterial spontaneously matching the wave impedance. Opt. Express 16, 12764-12770 (2008).
    62 Yang, Y. H., Un, I. W., Lee, H. C. & Yen, T. J. Magnetic surface polariton in a planar biaxial metamaterial with dual negative magnetic permeabilities. Plasmonics 7, 87-92, doi:10.1007/s11468-011-9279-3 (2012).
    63 Chen, C. Y., Yang, Y. H. & Yen, T. J. Unveiling the Electromagnetic Responses of Fourfold Symmetric Metamaterials and Their Terahertz Sensing Capability. Appl. Phys. Express 6, doi:10.7567/apex.6.022002 (2013).
    64 Feng, S. M. Graphical retrieval method for orthorhombic anisotropic materials. Opt. Express 18, 17009-17019 (2010).
    65 Lakhtakia, A. Constraints on effective constitutive parameters of certain Bbanisotropic laminated composite materials. Electromagnetics 29, 508-514, doi:10.1080/02726340903098647 (2009).
    66 Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, doi:10.1103/PhysRevLett.95.223902 (2005).
    67 Katsarakis, N., Koschny, T., Kafesaki, M., Economou, E. N. & Soukoulis, C. M. Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett. 84, 2943-2945, doi:10.1063/1.1695439 (2004).
    68 Chen, H. S., Ran, L. X., Huangfu, J. T., Zhang, X. M. & Chen, K. S. Left-handed materials composed of only S-shaped resonators. Phys. Rev. E 70, doi:10.1103/PhysRevE.70.057605 (2004).
    69 Chen, X., Wu, B. I., Kong, J. A. & Grzegorczyk, T. M. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71, doi:10.1103/PhysRevE.71.046610 (2005).
    70 Xu, X. L., Quan, B. G., Gu, C. Z. & Wang, L. Bianisotropic response of microfabricated metamaterials in the terahertz region. J. Opt. Soc. Am. B-Opt. Phys. 23, 1174-1180, doi:10.1364/josab.23.001174 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE