研究生: |
廖偉智 Wei-Zhi Liao |
---|---|
論文名稱: |
基於粒子系統之流體表面追蹤法 Particle-based Fluid Surface Tracking |
指導教授: |
張鈞法
Chun-Fa Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 基於粒子系統 、有號數距離函式 、立方體行進演算法 |
外文關鍵詞: | Particle-based, signed distance function, marching cube algorithm |
相關次數: | 點閱:51 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在流體模擬的領域中,有許多現成的流體表面追蹤的方法。而這些方法大致上可以分為階層法、粒子系統法、以及上面兩者合一的方法。在我的論文中,主要是以粒子系統法為主,它的好處就是非常適合模擬複雜的流體表面移動。然而,此粒子系統法卻有潛在性的問題。比如說,很難單純只用粒子系統去求得流體表面的三角片拓樸,更別提表面垂直向量及曲度。為了解決這問題,我使用一個表單去記錄每個格子的狀態,並且去對「有號數距離函式」做取樣存入每個格子點上。最後,我們使用「立方體行進演算法」重建液體表面,以及使用以物理為基礎的繪圖方式呈現。
In fluid simulation, there are many surface tracking methods proposed which can be classified as level set based methods, particle based methods and their hybrid combination. In this thesis, I focus on the particle based methods which are ideal for animating violent phenomena. However, a particle based method has some potential problems. For example, it is hard to get triangle meshes from particles, not to mention to compute the surface normals and curvatures. My proposed method incorporates a table to store the state of the cell and samples the signed distance function on each grid point to solve this problem. Finally, I use the marching cube algorithm to construct fluid surface and render it with a physically- based rendering method.
Barrett, R., Berry, M., Chan T., Demmel, J., Donato J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H. (1993). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics.
Enright, D., Marschner, S., Fedkiw, R. (2002). Animation and Rendering of Complex Water Surfaces. SIGGRAPH.
Foster, N., Fedkiw, R. (2001). Practical Animation of Liquids. SIGGRAPH.
Foster, N., Metaxas, D. (1996). Realistic Animation of Liquids. Graphical Models and Image Processing.
Harlow, F. H., Welch, J. E. (1965). Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids. 8: 2182.
Kass, M., Miller G. (1990). Rapid, Stable Fluid Dynamics for Computer Graphics. SIGGRAPH.
Klingner, B. M., Feldman, B. E., Chentanez, N., O'Brien, J. F. (2006). Fluid Animation with Dynamic Meshes. SIGGRAPH.
Lamorlette, A., Foster, N. (2002). "Structural Modeling of Flames for a Production Environment." Proceeding of SIGGRAPH 2002.
Lorensen, W. E., Cline H. E. (1987). "Marching cubes: A high resolution 3D surface construction algorithm." SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques: 163--169.
Losasso, F., Gibou, F., Fedkiw, R. (2004). Simulating Water and Smoke with an Octree Data Structure. SIGGRAPH.
Muller, M., Charypar, D., Gross M. (2003). "Particle-Based Fluid Simulation for Interactive Applications." Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation: 154.
Munson, R., B. (2002). Fundamentals of fluid mechanics.
O'Brien, J. F., Hodgins, J. K. (1995). Dynamic Simulation of Splashing Fluids. Proceeding of the Computer Animation.
Osher, S., Sethian J.A. (1988). "Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations." Journal of Computational Physics 79(1): 12-79.
Pharr, M., Humphreys, G. (2004). Physically Based Rendering : From Theory to Implementation.
Rasmussen, N., Nguyen, D. Q., Geiger, W., Fedkiw, R. (2003). Smoke Simulation for Large Scale Phenomena. SIGGRAPH.
Reeves, W. T. (1983). Particle Systems. A Technique for Modeling a Class of Fuzzy Objects. SIGGRAPH.
Stam, J. (1999). Stable Fluids. SIGGRAPH.
Stam, J., Fiume, E. (1993). "Turbulent Wind Fields for Gaseous Phenomena." Proceeding of SIGGRAPH 1993.
Yaeger, L., Upson C. (1986). Combining Physical and Visual Simulation - Creation of the Planet Jupiter for the Film "2010". SIGGRAPH.