簡易檢索 / 詳目顯示

研究生: 陳勇叡
Chen, Yung-Jui
論文名稱: 一個2.3μW 10-bit 83KS/s電容分裂連續漸進式類比數位轉換器
A 2.3μW 10-bit 83KS/s SAR ADC with split capacitor array
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 連續逼近式類比數位轉換器類比數位轉換器低功耗設計
外文關鍵詞: SAR ADC, ADC, Low-power
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著生物醫療系統與CMOS製程的進步,兩者的結合將可以對醫療系統與生醫電子系統有大幅度的幫助,例如:隨身的生理監測系統、神經元訊號擷取與分析與仿生電子鼻系統。在生理訊號監測中,EEG(腦波)、ECG(心跳)以及EMG(肌電訊號)是常運用的訊號,搭配電極的縮小,這些都可能整合到手持裝置;在神經元訊號擷取與分析方面,常運用侵入式或非侵入式電極,讀取extracellular signal或intracellular signal的神經訊號紀錄系統;在當今的電子鼻系統,幾乎都是大型裝置沒有小型的電子鼻系統。而為了使這些裝置隨身化,一個低電壓、低功耗的類比數位轉換器是必須的。
    本論文針對生物醫療系統設計連續漸進式類比數位轉換器,基於0.18μm CMOS製程並工作於1V。設計上對於取樣與保持電路使用了 Boosted switch增加控制訊號的電壓以降低取樣保持電路中開關MOS在低電壓狀況下的等效電阻,同時減低因低電壓操作時對取樣保持電路線性度的影響;對於DAC使用了省電式Split capacitor array,此種類型的電容陣列,將陣列中最大的MSB電容,分裂成與剩餘電容一樣,可以降低DAC部分功率消耗達37%;在比較器方面利用軌對軌動態比較器,如此以來同時達到低電壓低功率設計與軌對軌輸入電壓範圍。此類比數位轉換器在操作電壓為1V取樣頻率每秒十萬次時有47.81dB的訊號與雜訊比,微分型非線性誤差(DNL)和積分型非線性誤差(INL)分別介於0.53~-0.75LSB與1.53~-1.84LSB間,功率消耗只有4.6μW,並詳細分析了每個步驟的功率消耗數學式。所製作的晶片其面積為480μm x 390μm = 0.187mm2(不包含PAD)。


    CONTENTS 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 緒論 1 1.1 研究動機與目的 1 1.2 論文章節組織與研究方法 3 Chapter 2 類比數位轉換器原理與參數 5 2.1 類比數位轉換器參數 5 2.1.1 Quantization Error 5 2.1.2 Least Signification Bit 7 2.1.3 Differential Nonlinearity 7 2.1.4 Missing Codes 8 2.1.5 Integral Nonlinearity 8 2.1.6 Offset 9 2.1.7 Gain Error 10 2.1.8 Signal-to-Noise Ratio 11 2.1.9 Signal-to-Noise and Distortion Ratio 12 2.1.10 Effective Number of Bits 12 2.1.11 Dynamic Range 13 2.1.12 Spurious Free Dynamic Range 13 2.1.13 Total Harmonic Distortion 13 2.2 類比數位轉換器架構 14 2.2.1 快閃式類比數位轉換器 14 2.2.2 管線式類比數位轉換器 16 2.2.3 積分式類比數位轉換器 17 2.2.4 連續逼近式類比數位轉換器 19 2.2.5 超取樣式類比數位轉換器 20 2.3 類比數位轉換器之選擇 22 Chapter 3 一伏特十位元低功耗連續逼近式類比數位轉換器之設計 24 3.1 低電壓設計考量 24 3.2 取樣保持電路 26 3.2.1 低電壓問題 26 3.2.2 實際取樣保持電路設計 29 3.3 比較器 33 3.4 數位類比轉換器 36 3.5 連續逼近數位電路 44 3.6 ADC 佈局圖 50 Chapter 4 模擬與驗證 52 4.1 Pre-Simulation動態參數 52 4.2 Post-Simulation動態參數 54 4.3 功率消耗 55 4.3.1 1V功率消耗 55 4.3.2 0.9V功率消耗 56 4.4 模擬結果與比較 57 Chapter 5 量測結果 58 5.1 量測環境設定 58 5.2 供應電壓為1V之量測結果 61 5.2.1 靜態參數 61 5.2.2 動態參數 64 5.2.3 功率消耗 67 5.3 供應電壓為0.9V之量測結果 67 5.3.1 靜態參數 67 5.3.2 動態參數 70 5.3.3 功率消耗 74 5.4 量測結果與比較 74 Chapter 6 結論與未來發展 77 REFERENCE 78

    REFERENCE

    [1] J. Pine,“Recording action potentials from cultured neurons with extracellular microcircuit electrodes,”J. Neurosci. Methods, vol. 2, pp. 19-31, 1980.
    [2] A.C. Hoogerwerf and K.D. Wise, “A three-dimensional microelectrode array for chronic neural recording,” IEEE Trans. Biomed. Eng., vol. 41, pp. 1136-1146, Dec. 1994.
    [3] C.T. Nordhausen, E.M. Maynard, and R.A. Normann, “Single unit recording capabilities of a 100 microelectrode array,” Brain Research, vol. 726, pp. 129-140, 1996.
    [4] R.R. Harrison, P.T. Watkins, R.J. Kier, R.O. Lovejoy, D.J. Black, B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless 100-electrode neural recording system,” IEEE J. Solid-State Circuit, vol. 42, pp. 123-133, January 2007.
    [5] Moo Sung Chae et al. “Design Optimization for Integrated Neural Recording Systems,” IEEE J. Solid-State Circuit, vol. 43, pp. 1931 – 1939, 2008.
    [6] S. R. Norsworthy, R. Schreier, and G.C. Temes, “Delta-Sigma Data Converters,” IEEE Press. 1997.
    [7] D.A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons,New York, 1997.
    [8] R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE, 2008.
    [9] Keh-La Lin, A. Kemna and B.J. Hosticka, Modualr Low-power, High-speed CMOS Analog-to-Digital Converter for Embedded Systems, Kluwer Academic, 2002.
    [10] P.E. Allen and D.R. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2002.
    [11] Jens Sauerbrey, Doris Schmitt-Landsiedel, and Roland Thewes, “A 0.5-V 1-uW Successive Approximation ADC ” IEEE J. Solid-State Circuit, vol. 38, No. 7, July 2003
    [12] Siamak Mortezapour and Edward K. F. Lee, “A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process” IEEE J. Solid-State Circuit, vol. 35, No. 4, April 2000
    [13] Simone Gambini, and Jan Rabaey, “Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS” IEEE J. Solid-State Circuit, vol. 42, No. 11, November 2007
    [14] Brian P. Ginsburg, and Anantha P. Chandrakasan, ” 500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC” IEEE J. Solid-State Circuit, vol. 42, No. 4, April 2007
    [15] You-Kuang Chang, Chao-Shiun Wang and Chorng-Kuang Wang” A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications” IEEE Asian Solid-State Circuits Conference 2007 IEEE.
    [16] Michael D. Scott, Bernhard E. Boser, and Kristofer S. J. Pister, “An Ultralow-Energy ADC for Smart Dust” IEEE J. Solid-State Circuit, vol. 38, No. 7, July 2003.
    [17] Chi-Sheng Lin and Bin-Da Liu, “A New Successive Approximation Architecture for Low-Power Low-Cost CMOS A/D Converter” IEEE J. Solid-State Circuit, vol. 38, No. 1, January 2003.
    [18] Agnes et al, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 246 – 610.
    [19] Michiel van Elzaker et al. “A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 244 – 610.
    [20] Zhiheng Cao et al. “A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13$ mu$m CMOS,” IEEE J. Solid-State Circuit, vol. 44, pp. 862 – 873, March 2009.
    [21] C.Hu, “Future CMOS Scaling and Reliability,” Proc, IEEE, vol. 81, No.5, May 1993.
    [22] International Technology Roadmap for Semiconductors (ITRS 2007), http://public.itrs.net.
    [23] Hao-Chiao Hong, and Guo-Ming Lee “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC” IEEE J. Solid-State Circuit, vol. 42, No. 10, October 2007.
    [24] Ginsburg and Chandrakasan. “An Energy-Efficient Charge Recycling Approach for a SAR Converter With Capacitive DAC” Circuit and System, 2005. ISCAS 2005. IEEE International Symposium on (2005) pp. 184 – 187 vol. 1.
    [25] A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, pp. 1055–1057, Jun. 1996.
    [26] Gosselin et al. “A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction.” Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007. IEEE (2007) pp. 49-52.
    [27] Sang-Hyun Cho et al. “Design of a 1-Volt and µ-power SARADC for Sensor Network Application.” Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on (2007) pp. 3852 – 3855.
    [28] Naveen Verma, and Anantha P. Chandrakasan, “An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes” IEEE J. Solid-State Circuit, vol. 42, No. 6, June 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE