簡易檢索 / 詳目顯示

研究生: 顧雨軒
Ku, Yu-Hsuan
論文名稱: 以RO/NF薄膜處理電廠模擬廢液之研究
The study of RO/NF membrane processes for simulated liquid radioactive waste treatment
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 蔣本基
張怡怡
王竹方
林俊德
倪辰華
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 111
中文關鍵詞: 低放射性廢液逆滲透奈濾雷射剝蝕感應耦合電漿質譜儀
外文關鍵詞: LLRW, reverse osmosis, nanofiltration, Hermia model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜過濾已被廣泛地運用在電廠低放射性廢液處理當中,其中奈濾膜及逆滲透膜可用來濾除廢液中之膠體粒子及溶解性鹽類。本研究探討市售幾種奈濾膜及逆滲透膜在不同pH條件下對電廠廢液中常見金屬物種之阻擋率變化情形,其中過渡金屬阻擋率隨pH值上升而增加,但因為濾餅層堆積所加強的濃度極化效應,反而導致鹼金屬與鹼土金屬元素隨pH值上升阻擋率下降。其他操作參數如壓力、進流濃度也在研究中一併被探討。為了解薄膜阻塞的機制,本研究嘗試應用雷射剝蝕感應耦合電漿質譜儀(LA-ICP-MS)搭配α-step表面輪廓儀,針對已堵塞之薄膜進行分析,取得不同元素在表面及深度累積分布的資訊。此分析結果與Hermia阻塞模式計算結果頗為一致,極具潛力成為新的探討阻塞機制之分析工具。此外,超音波造影可以微米尺度觀察薄膜表面及堵塞物之型態,可作為觀察薄膜阻塞及後續清洗評估的簡易快速方法。


    Membrane filtration has been applied to the treatment of liquid low-level radioactive wastes (LLRW) worldwide. In this study, removal of dissolved salts and transition metal species from simulated nuclear wastewater was investigated with NF270 and several RO membranes at different pH conditions. Rejection rates of various species are highly dependent on the solution pH. Generally, rejection rates of transition metals increased with elevated pH levels while the opposite trend occurred in those of alkali and alkaline earth metal species due to cake-enhanced concentration polarization. Other operating parameters such as pressure and feed concentration were also discussed. To investigate membrane fouling mechanism, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) combined with α-step profilometer was first applied in fouled membrane analysis. The results of foulants spatial distribution and depth profile are quite consistent with the two-phase fouling mechanisms based on Hermia model. Besides, ultrasonic imaging system was used to observe the morphology of membrane surface in micro-scale. It provides a quick and convenient way to evaluate the severity of membrane fouling.

    摘要 I Abstract II Contents III Table index VI Figure index VII Chapter 1 Introduction 1 1.1 General overview 1 1.2 Aims of this study 3 Chapter 2 Literature Review 6 2.1 Membrane basics 6 2.1.1 Classification of membranes 6 2.1.2 Membrane materials 8 2.1.3 Transport mechanisms of membrane filtration 11 2.2 Membrane filtration for liquid radioactive waste (LRW) process 14 2.3 Membrane fouling 18 2.3.1 Scale formation 18 2.3.2 Hermia model for membrane fouling 20 2.4 Conventional analytical methods for fouled membranes 24 2.5 Introduction of LA-ICP-MS 29 2.5.1 Developments and applications of LA-ICP-MS 29 2.5.2 Mapping technique of LA-ICP-MS 32 2.5.3 Depth profile of LA-ICP-MS 34 Chapter 3 Experimental 36 3.1 Reagents and materials 36 3.2 Apparatus 39 3.2.1 Three-channels high pressure plate-and-frame membrane filtration system 39 3.2.2 LA-ICP-MS 41 3.2.3 α-step profilometer 45 3.2.4 Ultrasound imaging system 47 3.3 Details of experimental methods 49 3.3.1 Filtration methods 49 3.3.2 RO/NF scaling tests 50 3.3.3 Preparation of LA-ICP-MS standard for quantitation 52 3.3.4 Mapping technique of LA-ICP-MS 53 3.3.5 Depth profile of fouled membranes 54 Chapter 4 Results and discussion 56 4.1 Performance of membranes 56 4.1.1 Permeate flux 56 4.1.2 Conductivity rejection at different operating pressure 59 4.1.3 Metal rejection at different pH 62 4.1.4 Cs and Co rejections 73 4.2 Studies of membrane fouling 75 4.2.1 Fouling mechanism identified by Hermia model 75 4.2.2 Scalants distribution on the membrane surface 79 4.3 Identification of Hermia model by LA-ICP-MS/α-step profilometer analysis 88 4.3.1 The foulants distribution based on Hermia model 88 4.3.2 Depth profile of the fouled membranes 90 4.4 Ultrasonic imaging of the fouled membranes 95 Chapter 5 Conclusions and future work 100 5.1 Conclusions 100 5.2 Future work 101 Reference 102  Table index Table 2.1 Features and limitation of different treatment options 15 Table 2.2 Examples of membrane technology for nuclear waste processing 16 Table 2.3 Radioactive liquid wastes at Oconee Nuclear Station 17 Table 2.4 Recent applications of LA-ICP-MS 30 Table 2.5 Comparison of LA-ICP-MS and other analytical techniques 31 Table 3.1 Properties of the membranes employed in this study 38 Table 3.2 Operation conditions for laser ablation 43 Table 3.3 The scan parameters of Dektak 150 α-step profilometer system in this study 46 Table 3.4 The elements of feed solution analyzed by ICP-MS 51 Table 3.5 The information of calibration curves for LA-ICP-MS quantitation 53 Table 4.1 Water permeability and linearity correlation of tested membranes 58 Table 4.2 Mass balance of the elements analyzed in the fouling test 87 Table 4.3 Signal intensity of each crater 91   Figure index Figure 1.1 Flowchart of the experimental scheme 5 Figure 2.1 Semi-permeable membrane pore size ranges, with categories of impurities for which they are effective 7 Figure 2.2 Schematic representation of the concentration polarization 12 Figure 2.3 Scale formation mechanism on membranes 19 Figure 2.4 Hermia model solutions 22 Figure 2.5 Schematic representation of the principle of UTDR measurement in a membrane module. (a) cross-sectional view of the separation cell (b) time-domain response 25 Figure 2.6 AFM images of AFC99 membrane. (a) Scanned by tip (b) Scanned by silica colloid probe (diameter 4.2 μm) 27 Figure 3.1 A photograph of membrane filtration system 39 Figure 3.2 The schematic diagram of membrane filtration system (Dead-end). 1. feed tank ; 2. pump ; 3. by-pass ; 4. valve ; 5. pressure gauge ; 6. membrane cell ; 7. membrane ; 8. permeate 40 Figure 3.3 A photograph of Newwave UP 213 laser system 41 Figure 3.4 The schematic diagram of the LA system 42 Figure 3.5 A photograph of Agilent 7500a ICP-MS 43 Figure 3.6 The schematic diagram of ICP-MS 44 Figure 3.7 A photograph of α-step profilometer (Dektak 150, Veeco) system 45 Figure 3.8 The block diagram of Dektak 150 profilometer system 46 Figure 3.9 Schematic diagram of a homemade ultrasound imaging system 47 Figure 3.10 Illustrations of C-mode scanning 48 Figure 3.11 Photographs of fouled membranes (a)AD (at pH 4) ; (b)AD (at pH 9) ; (c)NF270 (at pH 4) 51 Figure 3.12 The multi-element mixed standard solutions on the membrane 52 Figure 3.13 The track of laser spot in line scan mode 54 Figure 3.14 (a) Craters on the membrane surface ablated by laser system for 1, 5, 10, 20, 40, 60 seconds ; (b) Cross-section of the ablation craters measured by Dektak 150 55 Figure 4.1 Effect of pressure on permeate flux 56 Figure 4.2 Effect of pressure on conductivity rejection 59 Figure 4.3 Speciation of IA、IIA dissolved salts in the feed solution at different pH obtained by (a) Na, Cs ; (b) Mg, Ca 63 Figure 4.4 Rejection for IA,IIA species at different pH(a)Na(b)Mg(c)Ca(d)Cs 64 Figure 4.5 Rejection for transition metals at different pH (a) Mn ; (b) Co ; (c) Cu ; (d) Zn 65 Figure 4.6 Saturation index of the transition metal species (a) Mn ; (b) Co ; (c) Cu ; (d) Zn 66 Figure 4.7 Speciation of transition metals in the feed solution at different pH. (a) Mn (b) Co (c) Cu (d) Zn 68 Figure 4.8 Rejection for trivalent metals and Ag at different pH (a) Cr (b) Fe (c) Sb (d) Ag 69 Figure 4.9 Saturation index of (a)Cr(b)Fe(c)Sb(d)Ag species at different pH 70 Figure 4.10 Speciation of (a) Cr (b) Fe (c) Sb (d) Ag in the feed solution at different pH 71 Figure 4.11 Effects of the concentration and pH on the rejection rates (a)Cs(b)Co 73 Figure 4.12 Change of normalized flux as a function of operation time and fouling mode optimized curves at (a) pH 4 (b) pH 9 76 Figure 4.13 Flux vs. time: fouling model optimization assuming more than one phase at pH 4 78 Figure 4.14 The distribution of alkali metals and alkaline earth metal on the fouled membranes (a) Na (b) Cs (c) Mg on AD; (d) Na (e) Cs (f) Mg on NF270 79 Figure 4.15 Saturation index of alkali metal and alkaline earth metal species 81 Figure 4.16 The distribution of transition metals on the fouled membranes (a) Mn (b) Co (c) Cu (d) Zn on AD; (e) Mn (f) Co (g) Cu (h) Zn on NF270 82 Figure 4.17 The distribution of transition metals on the fouling membranes (a) Cr (b)Fe (c)Sb (d)Ag on AD; (e)Cr (f)Fe (g)Sb (h)Ag on NF270 84 Figure 4.18 Cumulative normalized signal intensity of each element in the depth of the fouled AD membranes (a) fouled at pH 4 (b) fouled at pH 9 92 Figure 4.19 The distribution of foulants in vertical direction (a) fouled at pH 4 (b) fouled at pH 9 94 Figure 4.20 Ultrasonic images of membrane surface (a) AD-virgin (b) NF270 -virgin (c) AD-fouled (d) NF270-fouled 95 Figure 4.21 The morphology of membranes detected by ultrasound imaging system (a) AD-virgin (b) AD-fouled 97 Figure 4.22 The morphology of membranes detected by ultrasound imaging system (a) NF270-virgin (b) NF270-fouled 98 Figure 4.23 SEM image for NF270 fouled membrane in Ref. [75] 99 Figure 4.24 Ultrasonic imaging of PES membrane morphology (a)cross section (b)layers upon the nonwoven support (c)thin film layer(Ref.[68]) 99

    1. Choo, K.-H.; Kwon, D.-J.; Lee, K.-W.; Choi, S.-J., Selective removal of cobalt species using nanofiltration membranes. Environmental science & technology 2002, 36, 1330-1336.
    2. Combined methods for liquid radioactive waste treatment. In IAEA TECDOC-1336, 2003.
    3. Rahman, R.; Ibrahium, H.; Hung, Y. T., Liquid radioactive wastes treatment: a review. Water 2011, 3, 551-565.
    4. Greenlee, L.; Lawler, D.; Freeman, B.; Marrot, B.; Moulin, P., Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 2009, 43, 2317-2348.
    5. Cancino-Madariaga, B.; Aguirre, J., Combination treatment of corn starch wastewater by sedimentation, microfiltration and reverse osmosis. Desalination 2011, 279, 285-290.
    6. Arnal, J.; Sancho, M.; Verdú, G.; Campayo, J.; Gozálvez, J., Treatment of 137Cs liquid wastes by reverse osmosis Part II. Real application. Desalination 2003, 154, 35-42.
    7. Kryvoruchko, A. P.; Kornilovich, B. Y., Water deactivation by reverse osmosis. Desalination 2003, 157, 403-407.
    8. Zakrzewska-Trznadel, G.; Harasimowicz, M.; Chmielewski, A. G., Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Sep. Purif. Technol. 2001, 22-23, 617-625.
    9. Ambashta, R. D.; Sillanpää, M. E. T., Membrane purification in radioactive waste management: a short review. Journal of Environmental Radioactivity 2012, 105, 76-84.
    10. Yong, G.; Jun, Z.; Guanghui, Z.; Dong, Z., Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process. Sep. Purif. Technol. 2004, 40, 183-189.
    11. Bernata, X.; Fortuny, A.; Stüber, F.; Bengoa, C., Recovery of iron (III) from aqueous streams by ultrafiltration. Desalination 2008, 221, 413-418.
    12. Zakrzewska-Trznadel, G., Radioactive solutions treatment by hybrid complexation-UF/NF process. Journal of Membrane Science 2003, 225, 25-39.
    13. Szabolcs, S.; György, P.; László, W., Cobalt(III) EDTA complex removal from aqueous alkaline borate solutions by nanofiltration. Desalination 2005, 175, 179-185.
    14. Zakrzewska-Trznadel, G.; Harasimowicz, M., Removal of radionuclides by membrane permeation combined with complexation. Desalination 2002, 144, 207-212.
    15. Application of membrane technologies for liquid radioactive waste processing. In IAEA Technical Reports Series No.431, 2004.
    16. Radioactive Colloid Removal by Optimizing Chemical Parameters. In EPRI TR-1003232, 2003.
    17. Antony, A.; Low, J.; Gray, S.; Childress, A.; Le-Clech, P.; Leslie, G., Scale formation and control in high pressure membrane water treatment systems: a review. Journal of Membrane Science 2011, 383, 1-16.
    18. Tu, K. L.; Chivas, A. R.; Nghiem, L. D., Effects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes. Desalination 2011, 279, 269-277.
    19. Sheikholeslami, R., Composite scale formation and assessment by the theoretical Scaling Potential Index (SPI) proposed previously for a single salt. Desalination 2011, 278, 259-267.
    20. Sanderson, R.; Li, J.; Koen, L. J.; Lorenzen, L., Ultrasonic time-domain reflectometry as a non-destructive instrumental visualization technique to monitor inorganic fouling and cleaning on reverse osmosis membranes. Journal of Membrane Science 2002, 207, 105-117.
    21. Alex, R. B.; Eric, L.; Robert, R.; Panagiotis, D. C.; Yoram, C., Mineral scale monitoring for reverse osmosis desalination via real-time membrane surface image analysis. Desalination 2011, 273, 64-71.
    22. Hilal, N.; Al-Zoubi, H.; Darwish, N. A.; Mohammad, A. W., Characterisation of nanofiltration membranes using atomic force microscopy. Desalination 2005, 177, (1–3), 187-199.
    23. Johnson, D. J.; Al Malek, S. A.; Al-Rashdi, B. A. M.; Hilal, N., Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment. Journal of membrane science 2012, 389, (0), 486-498.
    24. Sun-Tak Hwang, K. K., Membranes in Separations. Wiley: New York, 1974.
    25. A Review of Ultrafiltration for Liquid Radwaste Processing Systems. In EPRI TR-1002761, 2003.
    26. Geise, G. M.; Lee, H.-S.; Miller, D. J.; Freeman, B. D.; McGrath, J. E.; Paul, D. R., Water purification by membranes: The role of polymer science. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, (15), 1685-1718.
    27. Li, D.; Wang, H., Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. 2010, 20, (22), 4551-4566.
    28. Lee, K. P.; Arnot, T. C.; Mattia, D., A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of membrane science 2011, 370, (1–2), 1-22.
    29. Singh, P. S.; Rao, A. P.; Ray, P.; Bhattacharya, A.; Singh, K.; Saha, N. K.; Reddy, A. V. R., Techniques for characterization of polyamide thin film composite membranes. Desalination 2011, 282, (0), 78-86.
    30. Zou, L.; Vidalis, I.; Steele, D.; Michelmore, A.; Low, S. P.; Verberk, J. Q. J. C., Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of membrane science 2011, 369, (1–2), 420-428.
    31. Shin, D. H.; Kim, N.; Lee, Y. T., Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance. Journal of membrane science 2011, 376, (1–2), 302-311.
    32. Yang, H.-L.; Lin, J. C.-T.; Huang, C., Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res. 2009, 43, (15), 3777-3786.
    33. Ferjani, E.; Lajimi, R. H.; Deratani, A.; Roudesli, M. S., Bulk and surface modification of cellulose diacetate based RO/NF membranes by polymethylhydrosiloxane preparation and characterization. Desalination 2002, 146, (1–3), 325-330.
    34. El-Saied, H.; Basta, A. H.; Barsoum, B. N.; Elberry, M. M., Cellulose membranes for reverse osmosis Part I. RO cellulose acetate membranes including a composite with polypropylene. Desalination 2003, 159, (2), 171-181.
    35. Cheryan, M., Ultrafiltration And Microfiltration Handbook. Technomic Publishing Co.: Lancaster, PA, 1998.
    36. Baker, R. W., Membrane Technology and Applications. 2nd ed.; John Wiley & Sons: 2004.
    37. Kim, E.-S.; Kim, Y. J.; Yu, Q.; Deng, B., Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). Journal of membrane science 2009, 344, (1–2), 71-81.
    38. Ghosh, A. K.; Hoek, E. M. V., Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. Journal of membrane science 2009, 336, (1–2), 140-148.
    39. Kwak, S.-Y.; Jung, S. G.; Yoon, Y. S.; Ihm, D. W., Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, (13), 1429-1440.
    40. Singh, P. S.; Joshi, S. V.; Trivedi, J. J.; Devmurari, C. V.; Rao, A. P.; Ghosh, P. K., Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. Journal of membrane science 2006, 278, (1–2), 19-25.
    41. Darwish, B. A. Q.; Aly, G. S.; Al-Rqobah, H. A.; Abdel-Jawad, M., Predictability of membrane performance of reverse osmosis systems for seawater desalination. Desalination 1989, 75, (0), 55-69.
    42. Paul, D. R., Reformulation of the solution-diffusion theory of reverse osmosis. Journal of membrane science 2004, 241, (2), 371-386.
    43. Bick, A.; Oron, G., Assessing the linkage between feed water quality and reverse osmosis membrane performance. Desalination 2001, 137, (1–3), 141-148.
    44. Chong, T. H.; Wong, F. S.; Fane, A. G., Enhanced concentration polarization by unstirred fouling layers in reverse osmosis: Detection by sodium chloride tracer response technique. Journal of membrane science 2007, 287, (2), 198-210.
    45. Geraldes, V.; Afonso, M. D., Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions. Journal of membrane science 2007, 300, (1–2), 20-27.
    46. Bouranene, S.; Fievet, P.; Szymczyk, A.; El-Hadi Samar, M.; Vidonne, A., Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. Journal of membrane science 2008, 325, (1), 150-157.
    47. Pabby, A. K., Membrane techniques for treatment in nuclear waste processing: global experience. Membrane Technology 2008, 2008, (11), 9-13.
    48. Freeman, J., Wolf Creek's liquid waste processing system improvements. In Proc. EPRI Int. Low-Level Waste Conf., Electric Power Research Institute: 2000.
    49. Duhart, A.; Dozol, J. F.; Rouquette, H.; Deratani, A., Selective removal of cesium from model nuclear waste solutions using a solid membrane composed of an unsymmetrical calix[4]arenebiscrown-6 bonded to an immobilized polysiloxane backbone. Journal of membrane science 2001, 185, (2), 145-155.
    50. Arnal, J. M.; Sancho, M.; Verdú, G.; Campayo, J. M.; Gozálvez, J. M., Treatment of 137Cs liquid wastes by reverse osmosis Part II. Real application. Desalination 2003, 154, (1), 35-42.
    51. Kryvoruchko, A. P.; Kornilovich, B. Y., Water deactivation by reverse osmosis. Desalination 2003, 157, (1–3), 403-407.
    52. Enhanced Liquid Radwaste Processing Using Ultrafiltration and Chemical Additives. In EPRI TR-1009562, 2004.
    53. M. Khayet, J. I. M., G. Zakrzewska-Trznadel, Direct contact membrane distillation for nuclear desalination, Part II: experiments with radioactive solutions. International Journal of Nuclear Desalination 2006, 2, (1), 56-73.
    54. Bartman, A. R.; Lyster, E.; Rallo, R.; Christofides, P. D.; Cohen, Y., Mineral scale monitoring for reverse osmosis desalination via real-time membrane surface image analysis. Desalination 2011, 273, (1), 64-71.
    55. Tang, C. Y.; Chong, T. H.; Fane, A. G., Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, (1–2), 126-143.
    56. Oh, H.-J.; Choung, Y.-K.; Lee, S.; Choi, J.-S.; Hwang, T.-M.; Kim, J. H., Scale formation in reverse osmosis desalination: model development. Desalination 2009, 238, (1–3), 333-346.
    57. Hermia, J., Constant pressure blocking filtration law application to power law non-Newtonian fluids. Transaction of Institute of Chemical Engineers 1982, 60, (3), 183-187.
    58. Charfi, A.; Ben Amar, N.; Harmand, J., Analysis of fouling mechanisms in anaerobic membrane bioreactors. Water Res 2012, 46, (8), 2637-50.
    59. Ho, J.; Sung, S., Effects of solid concentrations and cross-flow hydrodynamics on microfiltration of anaerobic sludge. Journal of membrane science 2009, 345, (1-2), 142-147.
    60. Kang, I.-J.; Yoon, S.-H.; Lee, C.-H., Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Res. 2002, 36, (7), 1803-1813.
    61. Elmaleh, S.; Abdelmoumni, L., Cross-flow filtration of an anaerobic methanogenic suspension. Journal of membrane science 1997, 131, (1–2), 261-274.
    62. Mairal, A. P.; Greenberg, A. R.; Krantz, W. B.; Bond, L. J., Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry. Journal of membrane science 1999, 159, (1–2), 185-196.
    63. Li, J.; Sanderson, R. D., In situ measurement of particle deposition and its removal in microfiltration by ultrasonic time-domain reflectometry. Desalination 2002, 146, (1–3), 169-175.
    64. Mairal, A. P.; Greenberg, A. R.; Krantz, W. B., Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectometry. Desalination 2000, 130, (1), 45-60.
    65. Lu, X.; Kujundzic, E.; Mizrahi, G.; Wang, J.; Cobry, K.; Peterson, M.; Gilron, J.; Greenberg, A. R., Ultrasonic sensor control of flow reversal in RO desalination—Part 1: Mitigation of calcium sulfate scaling. Journal of membrane science, (0).
    66. Zhang, Z.; Bright, V. M.; Greenberg, A. R., Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration. Sensors and Actuators B: Chemical 2006, 117, (2), 323-331.
    67. An, G.; Lin, J.; Li, J.; Li, X.; Jian, X., Non-invasive measurement of membrane scaling and cleaning in spiral-wound reverse osmosis modules by ultrasonic time-domain reflectometry with sound intensity calculation. Desalination 2011, 283, (0), 3-9.
    68. Cheng, L.-H.; Yang, Y.-C.; Chen, J.; Lin, Y.-H.; Wang, S.-H., A new view of membrane fouling with 3D ultrasonic imaging techniques: Taking the canola oil with phospholipids for example. Journal of membrane science 2011, 372, (1–2), 134-144.
    69. Richard Bowen, W.; Hilal, N.; Lovitt, R. W.; Sharif, A. O.; Williams, P. M., Atomic force microscope studies of membranes: force measurement and imaging in electrolyte solutions. Journal of membrane science 1997, 126, (1), 77-89.
    70. Richard Bowen, W.; Doneva, T. A., Atomic Force Microscopy Studies of Membranes: Effect of Surface Roughness on Double-Layer Interactions and Particle Adhesion. J. Colloid Interface Sci. 2000, 229, (2), 544-549.
    71. Hilal, N.; Al-Zoubi, H.; Darwish, N. A.; Mohamma, A. W.; Abu Arabi, M., A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy. Desalination 2004, 170, (3), 281-308.
    72. Lee, S.; Elimelech, M., Relating Organic Fouling of Reverse Osmosis Membranes to Intermolecular Adhesion Forces. Environmental science & technology 2006, 40, (3), 980-987.
    73. Ang, W. S.; Tiraferri, A.; Chen, K. L.; Elimelech, M., Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of membrane science 2011, 376, (1–2), 196-206.
    74. Madaeni, S. S.; Samieirad, S., Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010, 257, (1–3), 80-86.
    75. Chang, E. E.; Yang, S.-Y.; Huang, C.-P.; Liang, C.-H.; Chiang, P.-C., Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model. Sep. Purif. Technol. 2011, 79, (3), 329-336.
    76. Tang, C. Y.; Kwon, Y.-N.; Leckie, J. O., Characterization of Humic Acid Fouled Reverse Osmosis and Nanofiltration Membranes by Transmission Electron Microscopy and Streaming Potential Measurements. Environmental science & technology 2006, 41, (3), 942-949.
    77. Pacheco, F. A.; Pinnau, I.; Reinhard, M.; Leckie, J. O., Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques. Journal of membrane science 2010, 358, (1–2), 51-59.
    78. Gray, A. L., Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 1985, 110, (5), 551-556.
    79. Friedrich, L. A.; Halden, N. M., Alkali Element Uptake in Otoliths: A Link Between the Environment and Otolith Microchemistry. Environmental science & technology 2008, 42, (10), 3514-3518.
    80. Friedrich, L. A.; Halden, N. M., Determining Exposure History of Northern Pike and Walleye to Tailings Effluence Using Trace Metal Uptake in Otoliths. Environmental science & technology 2010, 44, (5), 1551-1558.
    81. Friedrich, L. A.; Halden, N. M., Laser Ablation Inductively Coupled Plasma Mass Spectrometric Analyses of Base Metals in Arctic Char (Salvelinus alpinus) Otoliths Collected from a Flooded Base Metal Mine. Environmental science & technology 2011, 45, (10), 4256-4261.
    82. Palace, V. P.; Halden, N. M.; Yang, P.; Evans, R. E.; Sterling, G., Determining Residence Patterns of Rainbow Trout Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Analysis of Selenium in Otoliths. Environmental science & technology 2007, 41, (10), 3679-3683.
    83. Gligorovski, S.; Van Elteren, J. T.; Grgić, I., A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis. Sci. Total Environ. 2008, 407, (1), 594-602.
    84. Okuda, T.; Kato, J.; Mori, J.; Tenmoku, M.; Suda, Y.; Tanaka, S.; He, K.; Ma, Y.; Yang, F.; Yu, X.; Duan, F.; Lei, Y., Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols. Sci. Total Environ. 2004, 330, (1–3), 145-158.
    85. Hsieh, Y.-K.; Chen, L.-K.; Hsieh, H.-F.; Huang, C.-H.; Wang, C.-F., Elemental analysis of airborne particulate matter using an electrical low-pressure impactor and laser ablation/inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, (7), 1502-1508.
    86. Hsieh, H.-F.; Chang, W.-S.; Hsieh, Y.-K.; Wang, C.-F., Lead determination in whole blood by laser ablation coupled with inductively coupled plasma mass spectrometry. Talanta 2009, 79, (2), 183-188.
    87. Krause-Buchholz, U.; Becker, J. S.; Zoriy, M.; Pickhardt, C.; Przybylski, M.; Rödel, G.; Becker, J. S., Detection of phosphorylated subunits by combined LA–ICP–MS and MALDI–FTICR–MS analysis in yeast mitochondrial membrane complexes separated by blue native/SDS-PAGE. Int. J. Mass spectrom. 2006, 248, (1–2), 56-60.
    88. Dussubieux, L.; Robertshaw, P.; Glascock, M. D., LA-ICP-MS analysis of African glass beads: Laboratory inter-comparison with an emphasis on the impact of corrosion on data interpretation. Int. J. Mass spectrom. 2009, 284, (1–3), 152-161.
    89. Sarah, G.; Gratuze, B.; Barrandon, J.-N., Application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient silver coins. J. Anal. At. Spectrom. 2007, 22, (9), 1163.
    90. Gallo, J. M.; Almirall, J. R., Elemental analysis of white cotton fiber evidence using solution ICP-MS and laser ablation ICP-MS (LA-ICP-MS). Forensic Science International 2009, 190, (1–3), 52-57.
    91. Rodushkin, I.; Axelsson, M. D., Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part III. Direct analysis by laser ablation. Sci. Total Environ. 2003, 305, (1–3), 23-39.
    92. Rusk, B. G.; Reed, M. H.; Dilles, J. H.; Klemm, L. M.; Heinrich, C. A., Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chem. Geol. 2004, 210, (1–4), 173-199.
    93. Pan, Z.; Wei, W.; Li, F., LA ICP-MS in microelectronics failure analysis. Journal of Materials Science: Materials in Electronics 2011, 22, (10), 1594-1601.
    94. Gruhl, S.; Vogt, C.; Vogt, J.; Hotje, U.; Binnewies, M., Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) of ZnS1-x Sex Semiconductor Materials. Microchimica Acta 2005, 149, (1), 43-48.
    95. Gligorovski, S.; Van Elteren, J. T.; Grgic, I., A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis. The Science of the total environment 2008, 407, (1), 594-602.
    96. Zoriy, M. V.; Dehnhardt, M.; Matusch, A.; Becker, J. S., Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2008, 63, (3), 375-382.
    97. Hoffmann, E.; Lüdke, C.; Skole, J.; Stephanowitz, H.; Ullrich, E.; Colditz, D., Spatial determination of elements in green leaves of oak trees <i>(Quercus robur) by laser ablation-ICP-MS. Fresenius' Journal of Analytical Chemistry 2000, 367, (6), 579-585.
    98. Giesen, C.; Mairinger, T.; Khoury, L.; Waentig, L.; Jakubowski, N.; Panne, U., Multiplexed Immunohistochemical Detection of Tumor Markers in Breast Cancer Tissue Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, (21), 8177-8183.
    99. González, J. J.; Fernández, A.; Mao, X.; Russo, R. E., Scanning vs. single spot laser ablation (λ=213 nm) inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2004, 59, (3), 369-374.
    100. Wagner, B.; Garboś, S.; Bulska, E.; Hulanicki, A., Determination of iron and copper in old manuscripts by slurry sampling graphite furnace atomic absorption spectrometry and laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 1999, 54, (5), 797-804.
    101. Moradi, A. B.; Swoboda, S.; Robinson, B.; Prohaska, T.; Kaestner, A.; Oswald, S. E.; Wenzel, W. W.; Schulin, R., Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environmental and Experimental Botany 2010, 69, (1), 24-31.
    102. Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R., Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2009, 64, (1), 67-73.
    103. Kindness, A.; Sekaran, C. N.; Feldmann, J., Two-Dimensional Mapping of Copper and Zinc in Liver Sections by Laser Ablation–Inductively Coupled Plasma Mass Spectrometry. Clin. Chem. 2003, 49, (11), 1916-1923.
    104. Russo, R. E.; Mao, X.; Liu, H.; Gonzalez, J.; Mao, S. S., Laser ablation in analytical chemistry—a review. Talanta 2002, 57, (3), 425-451.
    105. Zoriy, M. V.; Becker, J. S., Imaging of elements in thin cross sections of human brain samples by LA-ICP-MS: A study on reproducibility. Int. J. Mass spectrom. 2007, 264, (2–3), 175-180.
    106. Becker, J. S.; Zoriy, M. V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K., Imaging of Copper, Zinc, and Other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2005, 77, (10), 3208-3216.
    107. Becker, J. S.; Matusch, A.; Depboylu, C.; Dobrowolska, J.; Zoriy, M. V., Quantitative Imaging of Selenium, Copper, and Zinc in Thin Sections of Biological Tissues (Slugs−Genus Arion) Measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2007, 79, (16), 6074-6080.
    108. Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G., Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl. Surf. Sci. 1998, 127–129, (0), 278-286.
    109. Pisonero, J.; Koch, J.; Wälle, M.; Hartung, W.; Spencer, N. D.; Günther, D., Capabilities of Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Depth Profiling of Thin Metal Coatings. Anal. Chem. 2007, 79, (6), 2325-2333.
    110. Mateo, M. P.; Garcia, C. C.; Hergenröder, R., Depth Analysis of Polymer-Coated Steel Samples Using Near-Infrared Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2007, 79, (13), 4908-4914.
    111. Mason, P. R. D.; Mank, A. J. G., Depth-resolved analysis in multi-layered glass and metal materials using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Anal. At. Spectrom. 2001, 16, (12), 1381-1388.
    112. J. G. Mank, A.; R. D. Mason, P., A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples. J. Anal. At. Spectrom. 1999, 14, (8), 1143-1153.
    113. Hobbs, A. L.; Almirall, J. R., Trace elemental analysis of automotive paints by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Anal Bioanal Chem 2003, 376, (8), 1265-71.
    114. Neufeld, L. M. Introduction to Laser Ablation ICP-MS for the Analysis of Forensic Samples; New Wave Research, Inc.: Fremont, CA, USA, 2004.
    115. Hilal, N.; Al-Zoubi, H.; Mohammad, A. W.; Darwish, N. A., Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination 2005, 184, 315-326.
    116. Elimelech, M.; Xiaohua, Z.; Childress, A. E.; Seungkwan, H., Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of membrane science 1997, 127, (1), 101-109.
    117. GE Water and Process Technologies RO Product Specification, http://www.ge.com/water.
    118. Akin, O.; Temelli, F., Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM. Desalination 2011, 278, (1-3), 387-396.
    119. Lin, Y. L.; Chiang, P. C.; Chang, E. E., Removal of small trihalomethane precursors from aqueous solution by nanofiltration. J Hazard Mater 2007, 146, (1-2), 20-9.
    120. Geraldes, V.; Afonso, M. D., Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions. Journal of membrane science 2007, 300, (1-2), 20-27.
    121. Ng, H. Y., RO membrane solute rejection behavior at the initial stage ofcolloidal fouling. Desalination 2005, 174, (2), 211-217.
    122. Hwang, E.-D.; Lee, K.-W.; Choo, K.-H.; Choi, S.-J.; Kim, S.-H.; Yoon, C.-H.; Lee, C.-H., Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater. Desalination 2002, 147, (1–3), 289-294.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE