簡易檢索 / 詳目顯示

研究生: 洪世勳
Shih-Shing Huang
論文名稱: 氧化鉿薄膜電容器與場效電晶體的製作與電性分析
The Fabrication and Electrical Properties of HfO2 Thin Film Capacitors and Field-Effect Transistors
指導教授: 李雅明
Ya Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 89
中文關鍵詞: 氧化鉿高介電常數電子有效質量
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,金屬(Al )/氧化鉿(HfO2)/半導體(p-Si)結構的電容器成功地製作出,氧化鉿(HfO2)薄膜使用射頻磁控濺鍍法沈積。並對元件作基本的變溫電性量測,溫度範圍在77 K至465 K,並充分討論漏電流機制。結果顯示在累積區偏壓為1 V時漏電流約為10-6 A/cm2,介電常數為17.00,氧化鉿(HfO2)薄膜的厚度為23.2 nm,溫度範圍在450 K以上,所得到的結果顯示在低電場( 2.2 MV/cm),得金屬(Al)/氧化鉿(HfO2)界面的電流傳導機制為蕭基發射所主導。溫度在77 K時,所得到的結果顯示在高電場( 2.6 MV/cm), 電流傳導機制為傅勒-諾德翰穿隧所主導,並可利用蕭基發射及佛勒-諾德翰穿隧分析的結果求得在氧化鉿薄膜中電子的有效質量為0.4m0 (等效厚度為5.33 奈米(nm)) ,並可得到鋁/氧化鉿的位障高為0.94 eV。至於物性分析方面,我們也作了二次離子質譜儀縱深分佈分析(SIMS)、X光繞射分析(XRD)、穿透式電子顯微鏡照相分析(TEM)、電子能譜儀(ESCA)等分析薄膜的物理性質,亦有了很多收穫。
    同時也製備金屬(Al)/氧化鉿(HfO2)/半導體(p-Si) n通道型的場效電晶體,並對元件作基本電性測量,如IDS-VDS,IDS-VGS。發現臨界電壓等於1.1 V,最小的次臨界斜率等於241 mV/dec.,在VDS=0.1 V時,Ion/Ioff的比例有四個數量級。由次臨界斜率St=2.3(kT/q)[1+(CD+Cit)/Cox]的計算可以得到界面缺陷電荷密度等於1.4 1013 cm-2-eV-1。由於HfO2的熱穩定性好,所以HfO2非常適合當作下一代電晶體的閘極氧化層材料。


    In this work, the electrical properties of HfO2 thin films as function of temperature were investigated. The temperature range is from 77 K to 465 K. Al/HfO2/p-Si metal-oxide-silicon (MOS) capacitors were fabricated. The HfO2 gate dielectrics were deposited by RF magnetron sputtering. The leakage current of Al/HfO2/p-Si MOS capacitors was about 10-6 A/cm2 at 1V in accumulation mode. The dominant conduction mechanism is Schottky emission at high temperatures ( 450 K) and low electric fields ( 2.2 MV/cm). At 77 K, the conduction mechanism is Fowler-Nordheim tunneling at high electric fields ( 2.6 MV/cm). Both the intercept of the fitted Schottky emission line and the slope of the fitted Fowler-Nordheim tunneling line are functions of barrier height and electron effective mass in HfO2. An analysis of self-consistent iteration method was used to show that the extracted Al/HfO2 barrier-height and electron effective mass in the HfO2 film (equivalent oxide thickness=5.33 nm) are about 0.94 eV and 0.4m0, respectively. Secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA) and transmission electron microscope (TEM) images were used to examine the material properties.
    N-channel metal-oxide-semiconductor field effect transistors using HfO2 gate oxide were also fabricated. The IDS-VDS and IDS-VGS characteristics were measured. The threshold voltage was 1.1 V. The subthreshold swing was 241 mV/dec.. The ION/IOFF is about 104. Since St=2.3(kT/q)[1+(CD+Cit)/Cox], the interface trapped charge density Dit is 1.4 1013 cm-2-eV-1. In the future, MOSFETs with HfO2 gate oxide will be a promising candidate for future generations of MOSFETs.

    目 錄 第一章 緒論---------------------------------------------------------------------------1 1.1 高介電常數 (High-k)薄膜於極大型積體電路 (ULSI) 的應用 與發展-------------------------------------------------------------------------------1 1.2 High-k薄膜在DRAM上的應用-------------------------------------------------2 1.3 HfO2薄膜熱穩定性的簡介-------------------------------------------------------3 1.4 HfO2薄膜的製備方法-------------------------------------------------------------4 1.5 High-k薄膜於MOSFET閘極氧化層 (gate oxide) 的發展----------------5 1.6 本論文的研究方向----------------------------------------------------------------6 第二章 氧化鉿 (HfO2)薄膜元件的製備-----------------------------------7 2.1 射頻磁控濺鍍法 (RF magnetron sputtering)的簡介-------------------------7 2.2 晶片背面歐姆接面 (Ohmic contact) 的製備---------------------------------8 2.3 HfO2薄膜的成長-------------------------------------------------------------------8 2.4 HfO2薄膜電容器的製備----------------------------------------------------------9 2.5 HfO2薄膜電晶體的製備----------------------------------------------------------9 2.6 量測使用儀器---------------------------------------------------------------------12 第三章 氧化鉿 (HfO2) 薄膜基本介紹及物性分析-------------------13 3.1 HfO2薄膜的基本介紹-----------------------------------------------------------13 3.2 二次離子質譜儀縱深分佈之分析---------------------------------------------14 3.3 X-ray 繞射分析-------------------------------------------------------------------15 3.4 電子能譜儀之分析---------------------------------------------------------------16 3.5 穿隧式電子顯微鏡照相分析---------------------------------------------------17 第四章 Al/HfO2/Silicon電容器基本電性及漏電流機制分析-----18 4.1 電容-電壓 (C-V) 特性曲線量測---------------------------------------------18 4.2 電流-電壓 (I-V) 特性曲線量測----------------------------------------------19 4.3 漏電流傳導機制之簡介---------------------------------------------------------19 4.3.1 蕭基發射 (Schottky emission)------------------------------------------20 4.3.2 普爾-法蘭克發射 (Poole-Frenkel emission)--------------------------21 4.3.3 傅勒-諾德翰穿隧 (Fowler-Nordheim tunneling)---------------------22 4.4 MOS結構電容器與溫度變化之漏電流傳導機制分析---------------------22 4.5絕緣層中電子的有效質量-------------------------------------------------------25 4.6本章結論----------------------------------------------------------------------------27 第五章 Al/HfO2/Silicon場效電晶體基本電性量測-------------------28 5.1 IDS-VDS 曲線的特性探討-------------------------------------------------------28 5.2 IDS-VGS 曲線的特性探討-------------------------------------------------------29 5.3 次臨界斜率 (subthreshold swing)---------------------------------------------29 5.4 臨界電壓 (threshold voltage) 的粹取----------------------------------------30 5.5 遷移率 (mobility) 的探討-----------------------------------------------------31 第六章 結論-------------------------------------------------------------------------34 參考資料------------------------------------------------------------------------------36 實驗圖表------------------------------------------------------------------------------41 附錄-------------------------------------------------------------------------------------84 1. 射頻磁控濺鍍法操作步驟-------------------------------------------------------84 2. 電晶體製程之三道光罩圖-------------------------------------------------------87

    References

    [1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233-1241, August 1996.
    [2] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gated dielectric application,” in IEDM Tech. Dig., pp. 133-136, 1999.
    [3] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol. 21, no. 4, pp. 181-183, April 2000.
    [4] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
    [5] G. D. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., vol. 74, no. 19, pp. 2854-2856, May 1999.
    [6] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-□ dielectric metal oxide ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, March 2002.
    [7] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current transport in metal/hafnium oxide/silicon structure,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 97-99, February 2002.
    [8] Z. Xu, M. Houssa, S. D. Gendt, and M. Heyns, “Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1975-1977, March 2002.
    [9] H. Kim, A. Marshall, and P. C. Mclntyre, “Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies,” Appl. Phys. Lett., vol. 84, no. 12, pp. 2064-2066, March 2004.
    [10] B. K. Park, J. Park, M. Cho, C. S. Hwang, K. Oh, Y. Han, and D. Y. Yang, “Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing,” Appl. Phys. Lett., vol. 80, no. 13, pp. 2368-2370, April 2002.
    [11] D. A. Neumayer and E. Cariter, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, no. 4, pp. 1801-1808, August 2001.
    [12] H. Lee, S. Jeon, and H. Hwang, “Electrical characteristics of a Dy-doped HfO2 gate dielectric,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2615-2617, October 2001.
    [13] A. Callegari, E. Cariter, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films,” J. Appl. Phys., vol. 90, no. 12, pp. 6466-6475, December 2001.
    [14] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer thin HfO2 gate dielectric with n+-polysilicon gate,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 44-45, 2000.
    [15] S. J. Lee, S. J. Rhee, R. Clark and D. L. Kwong, “Reliability projection and polarity dependence of TDDB for ultra thin CVD HfO2 gate dielectrics,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 78-79, 2002.
    [16] S. J. Lee, H.F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 133-134, 2001.
    [17] R. Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan and J. C. Lee., “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 15-16, 2001.
    [18] J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai and P. J. Tobin, “Thermodynamic stability of high-□ dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol.80, pp. 1897-1899, 2002.
    [19] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si (100),” J. Appl. Phys., vol. 91, no. 7, pp. 4353-4363, April 2002.
    [20] Y. M. Lee and C. M. Lai, “Handbook of thin films material,” edited by H. S. Nalwa, vol. 3: Ferroelectric and Dielectric Thin Films.
    [21] T. Ma, S. Campbell, R. Smith, N. Hoilien, B. He, W. Gladfelter, C. Hobbs, D. Buchanan, M. Gribelyuk, M. Tiner, M. Coppel, and J. J. Lee, “Group IVB metal oxide high permittivity gate insulators deposited from anhydrous metal nitrates,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2348-2356, October 2001.
    [22] K. Onishi, L. Kang, R. Choi, E. Dharmarajan, S. Gopalan, J. Yongjoo, S. K. Chang, H. L. Byoung, R. Nieh, and J. C. Lee, “Dopant penetration effects on polysilicon gate HfO2 MOSFET’s,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 131-132, 2001.
    [23] Y. Kim, G. Gebara, M. Frelier, J. Barnett, D. Riley, J. Chen, K. Torres, J. E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H. J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H.R. Huff, E. Shero, C. Pomarede, M. Givans, M. Mazanez, and C. Werkhoven, “Conventional n-channel MOSFET device using single layer HfO2 and ZrO2 as high-□ gate dielectrics with polysilicon gate electrode,” in IEDM Tech. Dig., pp. 455-458, 2001.
    [24] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, and T. Furukawa, “HfO2 and HfAlO for CMOS: thermal stability and current transport,” in IEDM Tech. Dig., pp. 463-466, 2001.
    [25] C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, and P. Tobin, “80nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 651-654, 2001.
    [26] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan, and J. C. Lee, “Novel nitrogen profile engineering for improved TaN/HfO2/Si MOSFET performance,” in IEDM Tech. Dig., pp. 655-658, 2001.
    [27] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, E. Dharmarajan, and J. C. Lee, “Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET’s,” in IEDM Tech. Dig., pp. 659-662, 2001.
    [28] M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from Organo-Hafnium compounds,” Thin Solid Films, vol. 41, pp. 247- 259, August 1997.
    [29] C. H. Choi, T. S. Jeon, R. Clark, and D. L. Kwong, “Electrical properties and thermal stability of HfxOy gate dielectric with poly-Si gate electrode,” IEEE Electron Device Lett., vol. 24, pp. 215-217, April 2003.
    [30] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” J. Appl. Phys. vol. 87, pp. 484-492, January 2000.
    [31] K. P. Bastos, J. Morais, L. Miotti, R. P. Pezzi, G. V. Soares, I. J. R. Baumvol, R. I. Hegde, H. H. Tseng, and P. J. Tobin, “Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO2 films annealed in O2,” Appl. Phys. Lett., vol. 81, pp. 1669-1671, August 2002.
    [32] M. Cho, H. B. Park, J. Park, and C. S. Hwang, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic- layer deposition,” J. Appl. Phys., vol. 81, pp. 472-474, July 2002.
    [33] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates,” Appl. Phys. Lett., vol. 94, pp. 2563-2571, August 2003.
    [34] S. M. Sze, “Physics of Semiconductor Device,” 2nd ed.,Wiley, New York, 1981.
    [35] D. K. Schroder, “Semiconductor material and device characteristics,” Wiley, Arizona, 1998.
    [36] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, no. 1, pp. 278-283, September 1969.
    [37] J. F. Conley, J. Y. Ono, W. Zhuang, L. Stecker and G. Stecker, “Electrical properties and reliability of HfO2 deposited via ALD using Hf(NO3)4 precursor,” IEEE Integrated Reliability Workshop Final Report, pp. 108-112, October 2002.
    [38] K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskela, A. Harsta, “Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen,” J. Appl. Phys., vol. 92, no. 10, pp. 5698-5703, November 2003.
    [39] H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi and N. Yakovlev, “Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications,” J. Appl. Phys., vol. 94, no. 1, pp. 551-557, July 2003.
    [40] Y. T. Hou, M. F. Li, H. Y. Yu, and D. L. Kwong, “Modeling of tunneling currents through HfO2 and (HfO2)x(Al2O3)1-x gate stacks,” IEEE Electron Device Lett., vol. 24, no. 2, pp. 96-98, February 2003.
    [41] V. V. Afanas’ev and A. Stesmans, “Internal photoemission of electrons and holes from (100)Si into HfO2,” Appl. Phys. Lett., vol. 81, pp. 1053-1055, August 2002.
    [42] N. Zhan, K. L. Ng, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, “Characteristics of high quality hafnium oxide gate dielectric,” IEEE Electron Devices Meeting, pp. 43-46, June 2002.
    [43] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, no. 11, pp. 9298-9300, June 2003.
    [44] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, and C. Hu, “MOSFET carrier mobility model based on gate oxide thickness, threshold voltage and gate voltages,” Solid-State Electronics vol. 39, no. 10, pp. 1515-1518, 1996.
    [45] 賴志明,應用於金氧半電晶體閘極氧化層的氧化鉭薄膜電性之研究,國立清華大學博士論文,民國九十年六月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE