簡易檢索 / 詳目顯示

研究生: 葉哲宏
Yeh, Che-Hung
論文名稱: 雙光子振鏡系統之研發
Research and Development of Two Photons Polymerization Scanning System
指導教授: 傅建中
Fu, Chien-Chung
口試委員: 李三良
Lee, San-Liang
鄭正元
Jeng, Jeng-Ywan
項維巍
Hsiang, Wei-Wei
宋震國
Sung, Cheng-Kuo
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 雙光子聚合振鏡
外文關鍵詞: galvanometer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將設計一套能製造高精度微小結構之系統。使用振鏡作為移動加工光路之主要元件,搭配高功率780奈米飛秒雷射作為光源、磁性高精度移動平台以及龍門架構作為整個機台系統主體。
    近年來,由於奈米科技、微機構以及生醫科技的進步,對於細小結構的需求日益增大,若使用壓電移動平台製作成品可能無法達到所需要的速度以及產量,所以在此提出由振鏡以及高功率雷射所成的雙光子振鏡系統,以改進整體微影列印製程速度。
    系統建置方面。(1)電腦輔助路徑規劃程式:考慮到以往的路徑規劃,大多是用數值方法將數據以向量的方式做補點的路徑規劃,在此增加其他資料與路徑的轉換程式,將一些常用的檔案當作資料來源,用以擴增使用者對於資料的選用的方便性與適用性。(2)振鏡程式介面系統建立:有別於過往移動載台的方式,使用振鏡將會考慮到角度轉換長度問題,此研究會專注於此以程式換算方式精進其還原度至設計時的模樣。(3)曝光路徑優化:由於使用與以往不同的系統,造成的線寬、劑量累積以及路徑重疊等需求重新計算,此研究會建立出符合雙光子振鏡系統的製程參數。


    In this study, we will design a system which can manufacture high-resolution and tiny structure. The system was established by a high-power 780nm wavelength Ti-sapphire laser, which can achieve rapid manufacturing. Also, there was a high-resolution galvanometer that can provide a precise way to move the voxel. There are three high-precision stages and the gantry frame designed by ourselves.
    Recently, due to the improvement in nanotechnology, micromechanical, and biology, the demand of microstructure is getting higher and higher. Although the two-photons polymerization(TPP) piezo system can deal with precision structures, it would cost a lot of time on making larger structures. If there were only a TPP piezo system, it can’t reach the demand and speed. Therefore, this study will develop a TPP scanning system to solve those gaps and fasten the whole process.
    We have three new ideas for this system. First, computer-aided path planning system: it’s a big problem for users when programming a new path data. The most common way is calculating the coordinate point and filling the point data in the vector. However, it is limited to the structure that could be presented by the formula. This system will provide a new way to calculate the path data with some data like JPG, BMP, and STL. Second, setup of the scanning system interface: the scanner works by changing the angle of a galvanometer, so we need a system to convert the scanning angle to linear distance and control all of the components in the system. Third, optimization of the process: there are some parameters like the voxel and dose accumulation needed to recalculate to fit this system.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表格目錄 x 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 雙光子聚合 2 1.2.2 振鏡其他相關應用 5 1.2.3 振鏡用於曝光製造 6 1.3 研究動機 10 1.4 論文架構 11 第二章 研究方法 12 2.1 硬體架設 12 2.1.1 機構部分 12 2.1.2 光學部分 17 2.2 人機介面 18 2.2.1 程式格式 18 2.2.2 介面介紹 24 2.3 輔助軟體 32 2.3.1 介紹 32 2.3.2 理論構思 33 2.3.3 開發項目 34 第三章 實驗規劃與成果 36 3.1 系統介面成果 36 3.2 系統基本參數 41 3.2.1 線寬與線高 41 3.2.2 振鏡數據與長度轉換 43 3.2.3 最大寫入範圍 43 3.3 電腦輔助開發軟體 46 3.3.1 JPG轉換路徑檔 47 3.3.2 BMP轉換路徑檔 52 3.3.3 STL轉換路徑檔 56 第四章 結論與未來規劃 61 4.1 結論 61 4.1.1 與實驗室壓電平台系統比較 61 4.1.2 總結 61 4.2 未來規劃 62 4.2.1 拼接功能與複雜複合結構之製造 62 4.2.2 光學與製程上的整合 63 參考文獻 64 附錄 67

    [1] K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, "High-resolution maskless lithography," Journal of Microlithography Microfabrication and Microsystems, vol. 2, no. 4, pp. 331-339, Oct 2003.
    [2] K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, "Fabrication of three-dimensional microstructure using maskless gray-scale lithography," Sensors and Actuators a-Physical, vol. 130, pp. 387-392, Aug 2006.
    [3] F. Klein et al., "Elastic fully three-dimensional microstructure scaffolds for cell force measurements," Adv Mater, vol. 22, no. 8, pp. 868-71, Feb 23 2010.
    [4] A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, "Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization," Nanoscale, vol. 7, no. 7, pp. 2841-50, Feb 21 2015.
    [5] A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, "Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine," Applied Surface Science, vol. 253, no. 15, pp. 6599-6602, 2007.
    [6] A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J Tissue Eng Regen Med, vol. 1, no. 6, pp. 443-9, Nov-Dec 2007.
    [7] K. S. Worthington et al., "Two-photon polymerization for production of human iPSC-derived retinal cell grafts," Acta Biomaterialia, vol. 55, pp. 385-395, Jun 2017.
    [8] M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Applied Physics Letters, vol. 85, no. 11, pp. 1895-1897, Sep 2004.
    [9] J. K. Gansel et al., "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science, vol. 325, no. 5947, pp. 1513-1515, Sep 2009.
    [10] C. Marichy, N. Muller, L. S. Froufe-Perez, and F. Scheffold, "High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide," Scientific Reports, vol. 6, Feb 2016, Art. no. 21818.
    [11] N. Muller, J. Haberko, C. Marichy, and F. Scheffold, "Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared," Advanced Optical Materials, vol. 2, no. 2, pp. 115-119, Feb 2014.
    [12] A. Ovsianikov et al., "Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication," Acs Nano, vol. 2, no. 11, pp. 2257-2262, Nov 2008.
    [13] I. Sakellari, X. H. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, "3D Chiral Plasmonic Metamaterials Fabricated by Direct Laser Writing: The Twisted Omega Particle," Advanced Optical Materials, vol. 5, no. 16, Aug 2017, Art. no. 1700200.
    [14] H.-Y. Ni, "Fabrication of Micro Optical Elements Array by Nano 3D Lithography System," 2019.
    [15] C.-S. Wu, "Micro Optical Element Fabrication by Nano 3D Lithography System," 2018.
    [16] P.-Y. Chen, "Fabrication of Anti-wetting Surfaces by Sol-gel Process and Two-photon Polymerization," 2018.
    [17] P. L. Baldeck et al., "Optically driven Archimedes micro-screws for micropump applications: multiple blade design," vol. 8097, p. 809713, 2011.
    [18] Chih-Lang Lin, * Yi-Hsiung Lee,2 Chin-Te Lin,4 Yi-Jui Liu,2,3 Jiann-Lih Hwang,2 Tien-Tung Chung,4 and Patrice L. Baldeck1,5, "Multiplying optical tweezers force using a micro-lever," OPTICS EXPRESS, 2011.
    [19] J. Glückstad et al., "Optical screw-wrench for interlocking 2PP-microstructures," vol. 9764, p. 97641E, 2016.
    [20] S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography," Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 533-539, 2003.
    [21] K. I. a. H. K. Shoji Maruo, "Submicron manipulation tools driven by light in a liquid," Applied Physics 2003.
    [22] W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat Biotechnol, vol. 21, no. 11, pp. 1369-77, Nov 2003.
    [23] P.-Y. H. Ming-Chin Wu, Li-An Chu, Yen-Yin Lin, Chien-Chung Fu, Ann-Shyn Chiang, "Activating neurons by light in freemoving
    adult flies," SPIE, 2015.
    [24] Y. H. Xiaoqin Zhou, and Jieqiong Lin, "A review on the processing accuracy of two-photon polymerization," AIP, 19 March 2015.
    [25] G. F. M. Farsari, and C. Fotakis, "Fabrication of three-dimensional structures by three-photon polymerization," Optical Society of America, vol. 30, 2005.
    [26] A. O. Carsten Reinhardt, Sven Passinger, Boris N. Chichkov, "Fabrication of micromechanical and microoptical systems by two-photon polymerization," SPIE, 2007.
    [27] Nanoscribe. Nanoscribe. Available: https://www.nanoscribe.com/en/
    [28] L. J. Jiang et al., "Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy," Optics Letters, vol. 39, no. 10, pp. 3034-3037, May 2014.
    [29] A. Zukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, "Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics," Laser & Photonics Reviews, vol. 9, no. 6, pp. 706-712, Nov 2015.
    [30] https://zi.media/@wwwfreebrushscom/post/miyybB. 【 Illustrator教學】Illustrator繪製創意的萬花筒花朵圖形 - PS筆刷工廠PS筆刷工廠.
    [31] WiKipedia-https://zh.wikipedia.org/wiki/%E5%8F%AF%E7%B8%AE%E6%94%BE%E5%90%91%E9%87%8F%E5%9C%96%E5%BD%A2. 可縮放向量圖形.

    QR CODE