簡易檢索 / 詳目顯示

研究生: 吳駿霖
Wu, Jun Lin
論文名稱: 不同磊晶結構對氮化鋁鎵/氮化鎵高電子遷移率電晶體之發光特性研究
Light Emitting Characteristics of AlGaN/GaN HEMT with Different Epitaxial Layers
指導教授: 黃智方
Huang, Chih Fang
口試委員: 龔正
Gong, Jeng
王玉麟
Wang, Yu Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 高電子遷移率電晶體發光二極體氮化鋁鎵/氮化鎵發光波長調變二維電子氣通道
外文關鍵詞: HEMT, LED, AlGaN/GaN, wavelength modulation, 2DEG
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用矽基板上磊晶氮化鋁鎵/氮化鎵試片製作新穎light-emitting HEMT,主要研究方向於發光的位置及分佈、不同磊晶層的發光波長調變及改善p-ohmic特性等。
    本論文中使用相同製程三種試片: (A)在矽基板磊晶20 nm Al0.25Ga0.75N/GaN HEMT和表層50 nm的p型氮化鎵。(B)在矽基板磊晶20 nm Al0.32Ga0.68N/Al0.07Ga0.93N HEMT和表層50 nm的p型氮化鎵。(C)在矽基板磊晶10 nm Al0.25Ga0.75N/GaN HEMT和表層50 nm的p型氮化鎵。在三種試片的LE-HEMT結構中,最低的Ron,sp = 22 mΩ-cm2左右,最高的Id,max=334 mA/mm都在Sample A量測到。在電性方面藉由薄Ni/Au/ITO的p型氮化鎵接觸,讓Vturn-on從6 V改善至4.5 V。
    在發光特性上,則是設計不同的光罩佈局來驗證發光圖形。另一方面則利用不同的磊晶結構來調變發光波長,量測到Sample A的波長為364.42 nm和Sample B的波長為352.27 nm。亦利用CCD影像軟體分析Sample A及Sample C的發光延伸長度,分別為38.4 μm和20.7 μm。


    In this thesis, a novel light-emitting HEMT on AlGaN/GaN epitaxial layers on Si substrate were fabricated. This study is focused on light-emitting positions, distribution and wave length modulation with different light emitting GaN epitaxial layers, current conducting layers and p-type ohmic contacts.
    Devices on three kinds of epitaxial layers with the same fabrication process were investigated in this study: (A) a 20 nm Al0.25Ga0.75N/GaN HEMT on Si wafer with a 50 nm pGaN cap layer. (B) a 20 nm Al0.32Ga0.68N/Al0.07Ga0.93N HEMT on Si wafer with a 50 nm pGaN cap layer. (C) a 10 nm Al0.25Ga0.75N/GaN HEMT on Si wafer with a 50 nm pGaN cap layer. The observed lowest specific on-resistance among the LE-HEMTs structure is 22 mΩ-cm2 and the highest drain saturation current is 334 mA/mm on Sample A. For the on-state characteristics, the turn-on voltage (Vturn-on) can be improved from 6 V to 4.5 V by using Ni/Au/ITO as the p-type contacts.
    For optical properties, we try to study light emitting patterns by different mask layout designs. The wavelength of the emitted light is 364.42 nm on Sample A and 352.27 nm on Sample B, indicating the modulation of wavelength by the epitaxial structures. The extracted characteristic length of the light distribution is 38.4 μm on Sample A and 20.7μm on Sample C, respectively, from images captured by a CCD camera.

    中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究方向簡介與論文架構 10 1.3.1 研究方向簡介 10 1.3.2 論文架構 10 第二章 元件介紹與實驗設計 11 2.1 氮化鋁鎵/氮化鎵材料介紹 11 2.1.1 自發性極化效應 11 2.1.2 壓電性極化效應 12 2.2 基板的選擇 13 2.3 P型氮化鎵歐姆接觸 13 2.3.1 P型氮化鎵活化(activation) 14 2.3.2氧化銦錫(ITO) 14 2.3.3氧化銦錫(ITO)歐姆接觸 15 2.4 元件隔離方式 (Isolation) 16 2.5 實驗設計 17 2.5.1 試片種類 17 2.5.2 光罩設計 18 第三章 光罩設計與元件製程 27 3.1 p-GaN/AlGaN/GaN LE-HEMT 設計流程 27 3.2 溶劑清潔及p型氮化鎵活化 28 3.3 金屬對準記號及P型氮化鎵蝕刻用TLM (Mask 1) 29 3.4 汲極之P型氮化鎵及銦錫氧化薄膜自我對準蝕刻 (Mask 2) 31 3.5源極區域之歐姆接觸 (Mask 3) 33 3.6 定義元件隔離區 (Mask 4) 34 3.7 閘極金屬及襯墊金屬 (Mask 5) 35 3.8表面鈍化層 (Mask 6) 36 第四章 元件量測結果分析 38 4.1 正向電流-電壓量測分析 39 4.1.1 TLM測試元件量測 39 4.1.2 SBD測試元件量測 43 4.1.3 不同磊晶結構的電流電壓特性 45 4.1.4 不同汲極接觸的電流-電壓特性 51 4.2 發光元件設計分析 56 4.2.1 線性及指叉狀發光元件之分析 56 4.2.2 字體及圓形發光元件之分析 59 4.3 調變發光波長及發光延伸長度之分析 60 4.3.1 不同試片對發光波長之分析 60 4.3.2不同試片對發光延伸長度之分析 62 第五章 結論與未來工作 67 參考文獻 70

    [1] T. P. Chow and R. Tyagi, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices," Transaction on Electron Devices, vol. 41, no. 8, pp. 1481 - 1483, Aug 1994.
    [2] R. F. Davis, J. W. Palmou and J. A. Edmond, "A review of the status of diamond and silicon carbide devices for high-power, -temperature, and -frequency applications," Electron Devices Meeting, vol. 90, pp. 785-788, Dec 1990.
    [3] M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan and J. Carter, "Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1−xN heterojunctions," Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, June 1992.
    [4] M. Asif Khan, M. S. Shur and Q. Chen, "High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor," Electronics Letters, vol. 31, no. 24, pp. 2130-2131, Nov. 1995.
    [5] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars and U. K. Mishra, "Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors," Appl. Phys. Lett, vol. 69, no. 10, pp. 1438-1440, July 1996.
    [6] S. Yoshida, H. Ishii, J. Li, D. Wang and M. Ichikawa, "A high-power AlGaN/GaN heterojunction," Solid-State Electronics, vol. 47, no. 3, pp. 589-592, 2003.
    [7] O. Wada, T. Sanada and T. Sakurai, "Monolithic integration of an AlGaAs/GaAs DH LED with a GaAs FET driver," Electron Device Letters, vol. 10, pp. 305-307, Oct 1982.
    [8] C. H. Hong, C. T. Kim and Y. S. Kwon, "A Vertical Integration of GaAs/GaAlAs LED and Vertical FET with Embedded Schottky Electrodes," Japanese Journal of Applied Physics, vol. 29, no. 12, pp. 2427-2429, Dec 1990.
    [9] M. Feng, N. Holonyak Jr. and W. Hafez, "Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors," Applied Physics Letters, vol. 84, no. 1, pp. 151-153, Jaun 2004.
    [10] E. A. Fitzgerald, M. T. Bulsara, Y. Bai, C. Cheng, W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. Urtega, W. Ha, J. Bergman, B. Brar, C. Drazek, N. Daval, F. Letertre, W. E. Hoke, J. R. Laroche, K. J. Herrick and T. E. Kazior, "Monolithic III-V/Si Integration," Solid-State and Integrated-Circuit Technology, vol. 16, no. 10, pp. 1421 - 1424, Oct 2008.
    [11] F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis and N. T. Pelekanos, "Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications," Microelectronic Engineering, vol. 90, pp. 33-36, 2012.
    [12] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek Jr. and T. P. Chow, "Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Applied Physics Letters, vol. 102, no. 19, pp. 1921071-1921073, 2013.
    [13] Z. J. Liu, T. Huang, J. Ma, C. Liu and K. M. Lau, "Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors," Applied Physics Letters, vol. 104, no. 9, pp. 0911031-0911033, Mar 2014.
    [14] Y. J. Lee, Z. P. Yang, P. G. Chen, Y. A. Hsieh, Y. C. Yao, M. H. Liao, M. H. Lee, M. T. Wang and J. M. Hwang, "Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors," Optics Express, vol. 22, no. S6, pp. A1589-A1595, Oct 2014.
    [15] C. Liu, Y. F. Cai, Z. J. Liu, J. Ma and K. M. Lau, "Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 106, no. 18, pp. 1811101-1811104, May 2015.
    [16] F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoç, "Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs," Transactions on Electron Devices, vol. 48, no. 3, pp. 450 - 457, Mar. 2001.
    [17] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," J. Appl. Phys, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [18] R. Gaska, A. Osinsky, J. W. Yang and M. S. Shur, "Self-heating in high-power AlGaN-GaN HFETs," Electron Device Letters, vol. 19, no. 3, pp. 89-91, Mar. 1998.
    [19] M. K. Chattopadhyay and S. Tokekar, "Thermal model for dc characteristics of algan/gan hemts including self-heating effect and non-linear polarization," Microelectronics Journal, vol. 39, no. 10, p. 1181–1188, Mar. 2008.
    [20] M. L. Lee, J. K. Sheu and S. W. Lin, "Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer," Appl. Phys. Lett., vol. 88, no. 3, pp. 0321031-0321033, Jaun. 2006.
    [21] T. Minami, T. Miyata and T. Yamamoto, "Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering," Surface and Coatings Technology, Vols. 108-109, p. 583–587, Oct. 1998.
    [22] S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, "Hole Compensation Mechanism of P-Type GaN Films," Japanese Journal of Applied Physics, vol. 31, no. 5A, pp. 1258-1266, Feb. 1992.
    [23] M. Kuball, F. Demangeot, J. Frandon, M. A. Renucci, J. Massies, N. Grandjean, R. L. Aulombard and O. Briot, "Thermal stability of GaN investigated by Raman scattering," Appl. Phys. Lett, vol. 73, no. 7, pp. 960-962, Aug. 1998.
    [24] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars and L. A. Coldren, "Indium tin oxide contacts to gallium nitride optoelectronic devices," Appl. Phys. Lett, vol. 74, no. 26, pp. 3930-3932, June 1999.
    [25] Y. Choi and H. Kim, "Surface Fermi level pinning and carrier transport of indium-tin-oxide Ohmic contact to p-type GaN," Journal of Alloys and Compounds, vol. 533, pp. 15-18, April 2012.
    [26] D. W. Kim, Y. J. Sung, J. W. Park and G. Y. Yeom, "A study of transparent indium tin oxide (ITO) contact to p-GaN," Thin Solid Films, Vols. 398-399, pp. 87-92, Nov. 2001.
    [27] R. H. Horng, D. S. Wuu, Y. C. Lien and W. H. Lan, "Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN," Appl. Phys. Lett, vol. 79, no. 18, pp. 2925-2927, Oct. 2001.
    [28] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo and S. C. Chen, "InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts," Solid-State Electronics, vol. 47, no. 5, pp. 849-853, May 2003.
    [29] J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, H. Zirath and E. Y. Chang, "Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs," Electron Device Letters, vol. 28, no. 6, pp. 476-478, June 2007.
    [30] E. F. Schubert, Light-Emitting Diodes, Second Edition, New York: Cambridge University Press, 2007.
    [31] Y. C. Li, "Novel Light Emitting AlGaN/GaN HEMT," Oct. 2014.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE