研究生: |
吳駿霖 Wu, Jun Lin |
---|---|
論文名稱: |
不同磊晶結構對氮化鋁鎵/氮化鎵高電子遷移率電晶體之發光特性研究 Light Emitting Characteristics of AlGaN/GaN HEMT with Different Epitaxial Layers |
指導教授: |
黃智方
Huang, Chih Fang |
口試委員: |
龔正
Gong, Jeng 王玉麟 Wang, Yu Lin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 高電子遷移率電晶體 、發光二極體 、氮化鋁鎵/氮化鎵 、發光波長調變 、二維電子氣通道 |
外文關鍵詞: | HEMT, LED, AlGaN/GaN, wavelength modulation, 2DEG |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用矽基板上磊晶氮化鋁鎵/氮化鎵試片製作新穎light-emitting HEMT,主要研究方向於發光的位置及分佈、不同磊晶層的發光波長調變及改善p-ohmic特性等。
本論文中使用相同製程三種試片: (A)在矽基板磊晶20 nm Al0.25Ga0.75N/GaN HEMT和表層50 nm的p型氮化鎵。(B)在矽基板磊晶20 nm Al0.32Ga0.68N/Al0.07Ga0.93N HEMT和表層50 nm的p型氮化鎵。(C)在矽基板磊晶10 nm Al0.25Ga0.75N/GaN HEMT和表層50 nm的p型氮化鎵。在三種試片的LE-HEMT結構中,最低的Ron,sp = 22 mΩ-cm2左右,最高的Id,max=334 mA/mm都在Sample A量測到。在電性方面藉由薄Ni/Au/ITO的p型氮化鎵接觸,讓Vturn-on從6 V改善至4.5 V。
在發光特性上,則是設計不同的光罩佈局來驗證發光圖形。另一方面則利用不同的磊晶結構來調變發光波長,量測到Sample A的波長為364.42 nm和Sample B的波長為352.27 nm。亦利用CCD影像軟體分析Sample A及Sample C的發光延伸長度,分別為38.4 μm和20.7 μm。
In this thesis, a novel light-emitting HEMT on AlGaN/GaN epitaxial layers on Si substrate were fabricated. This study is focused on light-emitting positions, distribution and wave length modulation with different light emitting GaN epitaxial layers, current conducting layers and p-type ohmic contacts.
Devices on three kinds of epitaxial layers with the same fabrication process were investigated in this study: (A) a 20 nm Al0.25Ga0.75N/GaN HEMT on Si wafer with a 50 nm pGaN cap layer. (B) a 20 nm Al0.32Ga0.68N/Al0.07Ga0.93N HEMT on Si wafer with a 50 nm pGaN cap layer. (C) a 10 nm Al0.25Ga0.75N/GaN HEMT on Si wafer with a 50 nm pGaN cap layer. The observed lowest specific on-resistance among the LE-HEMTs structure is 22 mΩ-cm2 and the highest drain saturation current is 334 mA/mm on Sample A. For the on-state characteristics, the turn-on voltage (Vturn-on) can be improved from 6 V to 4.5 V by using Ni/Au/ITO as the p-type contacts.
For optical properties, we try to study light emitting patterns by different mask layout designs. The wavelength of the emitted light is 364.42 nm on Sample A and 352.27 nm on Sample B, indicating the modulation of wavelength by the epitaxial structures. The extracted characteristic length of the light distribution is 38.4 μm on Sample A and 20.7μm on Sample C, respectively, from images captured by a CCD camera.
[1] T. P. Chow and R. Tyagi, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices," Transaction on Electron Devices, vol. 41, no. 8, pp. 1481 - 1483, Aug 1994.
[2] R. F. Davis, J. W. Palmou and J. A. Edmond, "A review of the status of diamond and silicon carbide devices for high-power, -temperature, and -frequency applications," Electron Devices Meeting, vol. 90, pp. 785-788, Dec 1990.
[3] M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan and J. Carter, "Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1−xN heterojunctions," Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, June 1992.
[4] M. Asif Khan, M. S. Shur and Q. Chen, "High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor," Electronics Letters, vol. 31, no. 24, pp. 2130-2131, Nov. 1995.
[5] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars and U. K. Mishra, "Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors," Appl. Phys. Lett, vol. 69, no. 10, pp. 1438-1440, July 1996.
[6] S. Yoshida, H. Ishii, J. Li, D. Wang and M. Ichikawa, "A high-power AlGaN/GaN heterojunction," Solid-State Electronics, vol. 47, no. 3, pp. 589-592, 2003.
[7] O. Wada, T. Sanada and T. Sakurai, "Monolithic integration of an AlGaAs/GaAs DH LED with a GaAs FET driver," Electron Device Letters, vol. 10, pp. 305-307, Oct 1982.
[8] C. H. Hong, C. T. Kim and Y. S. Kwon, "A Vertical Integration of GaAs/GaAlAs LED and Vertical FET with Embedded Schottky Electrodes," Japanese Journal of Applied Physics, vol. 29, no. 12, pp. 2427-2429, Dec 1990.
[9] M. Feng, N. Holonyak Jr. and W. Hafez, "Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors," Applied Physics Letters, vol. 84, no. 1, pp. 151-153, Jaun 2004.
[10] E. A. Fitzgerald, M. T. Bulsara, Y. Bai, C. Cheng, W. K. Liu, D. Lubyshev, J. M. Fastenau, Y. Wu, M. Urtega, W. Ha, J. Bergman, B. Brar, C. Drazek, N. Daval, F. Letertre, W. E. Hoke, J. R. Laroche, K. J. Herrick and T. E. Kazior, "Monolithic III-V/Si Integration," Solid-State and Integrated-Circuit Technology, vol. 16, no. 10, pp. 1421 - 1424, Oct 2008.
[11] F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis and N. T. Pelekanos, "Monolithic integration of nitride-based transistor with Light Emitting Diode for sensing applications," Microelectronic Engineering, vol. 90, pp. 33-36, 2012.
[12] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek Jr. and T. P. Chow, "Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Applied Physics Letters, vol. 102, no. 19, pp. 1921071-1921073, 2013.
[13] Z. J. Liu, T. Huang, J. Ma, C. Liu and K. M. Lau, "Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors," Applied Physics Letters, vol. 104, no. 9, pp. 0911031-0911033, Mar 2014.
[14] Y. J. Lee, Z. P. Yang, P. G. Chen, Y. A. Hsieh, Y. C. Yao, M. H. Liao, M. H. Lee, M. T. Wang and J. M. Hwang, "Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors," Optics Express, vol. 22, no. S6, pp. A1589-A1595, Oct 2014.
[15] C. Liu, Y. F. Cai, Z. J. Liu, J. Ma and K. M. Lau, "Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 106, no. 18, pp. 1811101-1811104, May 2015.
[16] F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoç, "Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs," Transactions on Electron Devices, vol. 48, no. 3, pp. 450 - 457, Mar. 2001.
[17] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," J. Appl. Phys, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[18] R. Gaska, A. Osinsky, J. W. Yang and M. S. Shur, "Self-heating in high-power AlGaN-GaN HFETs," Electron Device Letters, vol. 19, no. 3, pp. 89-91, Mar. 1998.
[19] M. K. Chattopadhyay and S. Tokekar, "Thermal model for dc characteristics of algan/gan hemts including self-heating effect and non-linear polarization," Microelectronics Journal, vol. 39, no. 10, p. 1181–1188, Mar. 2008.
[20] M. L. Lee, J. K. Sheu and S. W. Lin, "Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer," Appl. Phys. Lett., vol. 88, no. 3, pp. 0321031-0321033, Jaun. 2006.
[21] T. Minami, T. Miyata and T. Yamamoto, "Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering," Surface and Coatings Technology, Vols. 108-109, p. 583–587, Oct. 1998.
[22] S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, "Hole Compensation Mechanism of P-Type GaN Films," Japanese Journal of Applied Physics, vol. 31, no. 5A, pp. 1258-1266, Feb. 1992.
[23] M. Kuball, F. Demangeot, J. Frandon, M. A. Renucci, J. Massies, N. Grandjean, R. L. Aulombard and O. Briot, "Thermal stability of GaN investigated by Raman scattering," Appl. Phys. Lett, vol. 73, no. 7, pp. 960-962, Aug. 1998.
[24] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars and L. A. Coldren, "Indium tin oxide contacts to gallium nitride optoelectronic devices," Appl. Phys. Lett, vol. 74, no. 26, pp. 3930-3932, June 1999.
[25] Y. Choi and H. Kim, "Surface Fermi level pinning and carrier transport of indium-tin-oxide Ohmic contact to p-type GaN," Journal of Alloys and Compounds, vol. 533, pp. 15-18, April 2012.
[26] D. W. Kim, Y. J. Sung, J. W. Park and G. Y. Yeom, "A study of transparent indium tin oxide (ITO) contact to p-GaN," Thin Solid Films, Vols. 398-399, pp. 87-92, Nov. 2001.
[27] R. H. Horng, D. S. Wuu, Y. C. Lien and W. H. Lan, "Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN," Appl. Phys. Lett, vol. 79, no. 18, pp. 2925-2927, Oct. 2001.
[28] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo and S. C. Chen, "InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts," Solid-State Electronics, vol. 47, no. 5, pp. 849-853, May 2003.
[29] J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, H. Zirath and E. Y. Chang, "Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs," Electron Device Letters, vol. 28, no. 6, pp. 476-478, June 2007.
[30] E. F. Schubert, Light-Emitting Diodes, Second Edition, New York: Cambridge University Press, 2007.
[31] Y. C. Li, "Novel Light Emitting AlGaN/GaN HEMT," Oct. 2014.