簡易檢索 / 詳目顯示

研究生: 王參群
Tsan-Chun Wang
論文名稱: 磁控濺鍍BZT/(Ta2O5)1-x(TiO2)x薄膜為MFIS微波變容器之高頻與微波頻段特性研究
High Frequency and Microwave Characteristics of BZT/(Ta2O5)1-x(TiO2)x Thin Films deposited by RF Magnetron sputtering for MFIS varactors
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 151
中文關鍵詞: 鐵電鋯鈦酸鋇緩衝層氧化鈦氧化鉭變容器微波
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以磁控濺鍍法鍍製BZT/ (Ta2O5)1-x(TiO2)x薄膜於高阻值Si基板(n-type,電阻率~5000Ω-cm)上,製作具有high-k介電緩衝層之MFIS(metal-ferroelectric-insulator-semiconductor)變容器,觀測其在高頻(1MHz)與微波頻段(50MHz to 25 GHz)下的特性,並探討此特性與製程條件、熱處理過程之關係。高介電常數緩衝層的置入一般被認為可以提升薄膜的有效介電常數並降低微波能量在矽基板的損耗,使得此結構可應用於矽基整合鐵電微波元件上。矽基整合製程為利用製程穩定性高、控制容易、技術成熟的半導體製程將薄膜型被動元件整合在單一晶片上,可滿足高頻通訊被動元件嚴格之規格要求。
    實驗結果發現BZT/(Ta2O5)1-x(TiO2)x /HRS結構之MFIS變容器其大部分的調變性在高頻部分是來自於1.Si基板表面因為偏壓施加所顯現的半導體特性和2.因高溫鍍製BZT所造成的緩衝層金屬離子氧化態改變以及對應產生的離子空缺和載子效應。這些在製程中(鍍膜條件、退火溫度、氛圍)不易避免的現象將會使得單一Metal-Oxide-Semiconductor(MOS)的平帶電壓產生偏移,使得兩個back-to-back串接而成C-V圖顯現出製程相關的結果,並反應在不同的極值電容值及迥異的loss-V圖,同時也影響到微波頻段的特性。而在微波頻段中比較低頻的區間其特性是基板性質控制,隨著頻率增加至25GHz,逐漸的轉為順電相調變層與緩衝層控制。顯然的在微波頻段較高頻率的區間,調變性比1MHz時所量測到的小許多,但仍有28.70%( BZT500nm 600℃ /(Ta2O5)0.929(TiO2)0.071 50nm 200℃ /HRS、頻率25GHz、DC bias 32V)之調變能力,於是我們認為未來如果能將製程條件再做改善達到最佳化,將可以成功的將此高調變性薄膜導入矽□半導體製程產業中,真正達到降低生產成本、推廣鐵電材料在微波頻段應用於varactor, filter, phase shifter或其他元件的目的。


    目 錄 摘要...................................................... I 致謝.................................................... III 目錄..................................................... IV 表目錄................................................... VI 圖目錄................................................... VI 第一章 緒論................................................1 1.1 前言................................................1 1.2 動機與目標..........................................2 第二章 文獻回顧............................................6 2.1 矽基板整合鐵電材料之微波元件........................6 2.1.1 鐵電材料應用於微波元件的優勢................... 7 2.1.2 整合製程...................................... 10 2.1.3 矽基板之優點與特性.............................11 2.1.4 Si基板整合鐵電變容器...........................11 2.1.5 高阻值矽基板...................................13 2.2鐵電材料的研究與發展............................... 14 2.2.1鐵電材料的結構與特性........................... 14 2.2.2 鈦酸鋇系鐵電材料.............................. 16 2.2.2-1鈣鈦礦結構................................... 16 2.2.3-2鈦酸鋇........................................17 2.2.2-3鋯鈦酸鋇(Ba(Zr,Ti)O3,BZT) ...................18 2.3(Ta2O5)1-x(TiO2)x的研究及發展.....................18 2.3.1單成分介電材料發展緣由..........................18 2.3.2 (Ta2O5)1-x(TiO2)x薄膜..........................20 2.4極化機制............................................21 2.4.1 極化現象...................................... 22 2.4.2 介電常數與介電損失............................ 23 2.5 鐵電薄膜/緩衝層在Si基板共平面結構上的電性機制......24 2.6微帶結構電容模型—CAD model.........................26 第三章 實驗方法與步驟.....................................45 3.1緩衝層薄膜之製備................................... 45 3.1.1(Ta2O5)1-x(TiO2)x緩衝層靶材製備.................45 3.1.2(Ta2O5)1-x(TiO2)x薄膜...........................46 3.2 BZT薄膜之製備......................................47 3.2.1 BZT靶材....................................... 47 3.2.2 BZT薄膜........................................48 3.3薄膜熱處理......................................... 48 3.3.1 (Ta2O5)1-x(TiO2)x /HRS結構退火製程.............48 3.3.2 BZT/(Ta2O5)1-x(TiO2)x /HRS結構退火製程.........48 3.4上電極之製作....................................... 49 3.4.1 Wet etching法..................................49 3.5薄膜分析量測........................................50 3.5.1 薄膜結構分析...................................50 3.5.2 薄膜成分分析.................................. 50 3.5.3厚度量測及微觀結構—SEM分析.....................51 3.5.4電性分析..................... ..................51 3.5.6穿透式電子顯微鏡及Energy Dispersive Spectrometer (EDS) ................................................... 53 3.5.7 Energy Spectroscope for Chemical Analysis (ESCA)....................................................53 第四章 結果與討論.........................................64 4.1 (Ta2O5)1-x(TiO2)x薄膜特性..........................64 4.1.1成分對薄膜電性之影響............................64 4.1.2退火對薄膜電性之影響............................65 4.2 BZT薄膜特性........................................65 4.2.1 BZT薄膜成分鑑定................................65 4.2.2 鍍膜溫度對高頻(1Mhz)電性之影響.................66 4.3 各種缺陷電荷對於BZT/(Ta2O5)1-x(TiO2)x/HRS結構之電性影響........................................................67 4.3.1 Oxide trapped charge之影響.....................68 4.3.2 Mobile ion charge 之影響.....................69 4.3.3 Fixed oxide charge 之影響.....................69 4.3.4 緩衝層氧化物還原之貢獻.........................70 4.4 BZT/(Ta2O5)1-x(TiO2)x/HRS結構之高頻、微波特性討論..72 4.4.1 BZT鍍膜溫度、緩衝層介電常數對BZT/(Ta2O5)1-x(TiO2)x薄膜電性之影響.......................................... 72 4.4.2 緩衝層成分、膜厚對薄膜電性之影響.............. 77 4.4.3 退火氛圍對薄膜電性之影響...................... 80 4.5 正反調變性機制模型.................................83 4.5.1 Lightly-Depleted...............................85 4.5.1.1施加小偏壓下..................................85 4.5.1.2施加大偏壓下..................................85 4.5.2 Heavily-Depleted...............................86 4.5.2.1施加小偏壓下..................................86 4.5.2.2施加大偏壓下.. ...............................87 4.6 以HFSS模擬BZT/(Ta2O5)1-x(TiO2)x/HRS結構............87 4.6.1 HFSS模擬之結構.................................87 4.6.2 HFSS模擬結果...................................88 第五章 結論..............................................145 第六章 參考文獻..........................................147 表目錄 表1.1 行動通訊系統之發展...................................5 表1.2 鐵電膜在微波調諧元件應用之優勢比較...................5 表2.1 各種變容器的比較....................................43 表2.2 三十二種晶體點群對稱............................... 43 表2.3 (Ta2O5)1-x(TiO2)x塊材1MHz下的介電常數和散逸因子.....44 表3.1 (Ta2O5)1-x(TiO2)x薄膜之濺鍍條件.....................62 表3.2 BZT薄膜之濺鍍條件...................................62 表3.3 Ag上電極之濺鍍條件.......................... .......63 表4.1 (Ta2O5)1-x(TiO2)x以及BZT之靶材、薄膜成分...........141 表4.2 (Ta2O5)1-x(TiO2)x以及BZT之靶材之鍍率...............141 表4.3 BZT(500nm)/buffer(50nm 200℃鍍膜)/HRS在不同BZT鍍膜溫 度下的高頻、微波頻段特性列表......... ...................142 表4.4 BZT/buffer/HRS在不同緩衝層膜厚下的高頻、微波頻段特性 列表.....................................................143 表4.5 BZT/buffer/HRS在不同熱處理條件下的微波頻段(2GHz)特性列表.......................................................144 圖目錄 圖1.1 各類訊號傳輸內容比重隨時間演進................... ...4 圖2.1 鐵電材料電容-電壓曲線圖:(a).鐵電相;(b).順電相.....29 圖2.2 Si(a)頻率對阻值的作圖﹔(b)loss tanδ對頻率作圖......29 圖2.3 四種基本共振線路................................. ..30 圖2.4 主動元件與被動R、L、C元件之積體化電路...............30 圖2.5 相位陣列天線示意圖..................................31 圖2.6 在Si基板上共平面結構之鐵電變容器(MIS structure) ... 31 圖2.7 平行電板結構(MIM structure)之變容器.................32 圖2.8 平行電容與共平面電容比較........................... 32 圖2.9 共平面結構的等效電路............................... 33 圖2.10 MFOS與MOS的比較.................................. 33 圖2.11 鐵電MIM結構與Si變容器之Q factor的比較..............34 圖2.12 鐵電MFOS結構與有無緩衝層之損耗示意圖......... ... 34 圖2.13 典型鐵電材料之電滯曲線圖...........................35 圖2.14 典型ABO3鈣鈦礦之晶體構造示意圖.....................35 圖2.15 鈦酸鋇相轉變之結晶構造與溫度關係圖.................36 圖2.16 等價取代離子對鈦酸鋇晶格轉換溫度之影響圖......... .36 圖2.17 DPT行為1及正常鐵電行為2:(a)自發極化對溫度,(b)介電常數對溫度,(c)介電常數對頻率關係圖.........................37 圖2.18 (Ta2O5)1-x(TiO2)x介電常數對TiO2莫爾添加量之關係....37 圖2.19 材料的四種極化機構簡圖.............................38 圖2.20 材料之介電常數隨頻率的變化圖.......................39 圖2.21鐵電薄膜在Si基板共平面結構之等效電路圖;(a)小dc偏壓之下;(b)大dc偏壓之下;(c)微波頻段等效電路..................39 圖2.22 MFOS薄膜結構電極2施加由正到負的電壓其電容電壓圖....40 圖2.23 (a)電極1下的C-V圖 (b)C1與C2兩者串聯合併...........40 圖2.24 低頻與高頻之C-V變化................................41 圖2.25 (a)三層基板之金屬微帶結構、(b)等效電路以及(c)電磁場分布.............. .........................................41 圖2.26多層基板之金屬微帶結構..............................42 圖3.1 實驗流程............................................54 圖3.2 退火熱處理實驗流程...................... ...........54 圖3.3 (Ta2O5)1-x(TiO2)x靶材配製之流程圖...................55 圖3-4(a) (Ta2O5)1-x(TiO2)x粉末煆燒溫度曲線................56 圖3-4(b) (Ta2O5)1-x(TiO2)x靶材燒結溫度曲線................56 圖3.5 BaZrO3粉末煆燒後之XRD................... ...........57 圖3.6 Ba2TiO4粉末煆燒後之XRD..............................57 圖3.7 BZT粉末(Ba未過量)煆燒後之XRD........................58 圖3.8 BZT粉末(Ba過量)煆燒後之XRD.................. .......58 圖3.9 Ba2TiO4、BaZrO3、BZT(Ba未過量)粉末配製之流程圖.....59 圖3.10 Ba-rich BZT靶材配製流程圖................... ......59 圖3.11黃光微影法製作指叉和方塊上電極的圖樣................60 圖3.12上電極的圖樣........................................60 圖3.13指叉與方塊共平面電極結構側視圖......................61 圖3.14 信號流動圖形(one-port) ............................61 圖4.1 Ag/(Ta2O5) /Pt/Ti/Si結構之高頻電性..................89 圖4.2 Ag/(Ta2O5)0.929(TiO2)0.071 /Pt/Ti/Si結構之高頻電性.89 圖4.3 Ag/(Ta2O5)0.8(TiO2) 0.2/Pt/Ti/Si結構之高頻電性......90 圖4.4 Ag/(Ta2O5)1-x(TiO2)x/Ti/Pt/Si結構,以電性對target成分之作圖................... ........................ .......90 圖4.5 (a)(b)(c)各別代表成分為x=0、x=0.08、x=0.16的(Ta2O5)1-x(TiO2)x靶材在表3.1條件下鍍膜在Pt/Ti/SiO2/Si基板上一個小時之SEM截面影像...............................................92 圖4.6 (a)(b)為x=0、x=0.08的靶材在表3.1條件下鍍膜於白金鈦基板上,經熱處理後(氧氣),介電常數對熱處理溫度關係圖..........93 圖4.7 (a)(b) x=0、x=0.08的靶材在表3.1的條件下鍍膜在Pt/Ti/SiO2/Si上,經熱處理後(氧氣),其結晶繞射結果........................................................94 圖4.8 C-V and Loss-V characteristics of BZT film deposited at 500℃(1MHz) ..........................................95 圖4.9 C-V Loss-V characteristics of BZT film deposited at 600℃(1MHz) ................... ..........................95 圖4.10 C-V Loss-V characteristics of BZT film deposited at 700℃(1MHz) ............................. ................96 圖4.11(a) 不同鍍膜溫度的BZT薄膜之Xray繞射結果(去除Pt繞射峰)(b)調變性、FOM與鍍膜溫度之關係............ ...............97 圖4.12 偏壓施加下,介面電荷情況...........................97 圖4.13 oxide中各種charge之分佈............................98 圖4.14 電極2施加負偏壓,oxide中trap電子造成C2-V圖偏移.....98 圖4.15 gate injection時,電極2施加電壓造成的C-V圖.........99 圖4.16 substrate injection時,電極2施加電壓造成的C-V遲滯..99 圖4.17 Mobile ion charge在電極2施加負電壓時的電荷分布....100 圖4.18電極2施加電壓,mobile ion charge造成的C-V現象......100 圖4.19 Fixed Oxide charge................................101 圖4.20 電極2施加偏壓,正fixed oxide charge影響C1、C2串接結果.............. ........................................101 圖4.21 Ta-Si-O 以及 Ti-Si-O三元相圖(temperature=700-1000℃) ..................... ...........................102 圖4.22 Ta2O5 (10nm 200℃)/HRS仿照BZT鍍膜條件熱處理後,其ESCA縱深分析結果............. ...............................103 圖4.23 BZT鍍膜溫度為500℃之BZT/Ta2O5/HRS結構C-V高頻特性圖.................. ....................................104 圖4.24 BZT鍍膜溫度為500℃之BZT/Ta2O5/HRS結構LOSS-V高頻特性圖................ ...................... ...............104 圖4.25 BZT鍍膜溫度為600℃之BZT/Ta2O5/HRS結構C-V高頻特性圖................................. .....................105 圖4.26 BZT鍍膜溫度為600℃之BZT/Ta2O5/HRS結構LOSS-V高頻特性圖.......................... ............................105 圖4.27 BZT鍍膜溫度為700℃之BZT/Ta2O5/HRS結構C-V高頻特性圖.......................... ............................106 圖4.28 BZT鍍膜溫度為700℃之BZT/Ta2O5/HRS結構LOSS-V高頻特性圖....................... ..............................106 圖4.29 BZT鍍膜溫度為500℃之BZT/(Ta2O5)0.929(TiO2)0.071 /HRS結構C-V高頻特性圖........................................107 圖4.30 BZT鍍膜溫度為500℃之BZT/(Ta2O5)0.929(TiO2)0.071 /HRS結構LOSS-V高頻特性圖.....................................107 圖4.31 BZT鍍膜溫度為600℃之BZT/(Ta2O5)0.929(TiO2)0.071 /HRS結構C-V高頻特性圖.......... .............................108 圖4.32 BZT鍍膜溫度為600℃之BZT/(Ta2O5)0.929(TiO2)0.071 /HRS結構LOSS-V高頻特性圖.....................................108 圖4.33 BZT鍍膜溫度為700℃之BZT/(Ta2O5)0.929(TiO2)0.071 /HRS結構C-V高頻特性圖........................................109 圖4.34 BZT鍍膜溫度為700℃之BZT/(Ta2O5)0.929(TiO2)0.071 /HRS結構LOSS-V高頻特性圖.....................................109 圖4.35 XRD result of BZT/(Ta2O5)0.929(TiO2)0.071 /HRS structure;BZT thin films were deposited at 500℃、600℃、700℃....................................................110 圖4.36 XRD result of BZT/(Ta2O5) /HRS structure;BZT thin films were deposited at 500℃、600℃、700℃...... .............................................110 圖4.37 back-to-back simulation results of C-V curve,(a)(b)(c) correspond to different C-V curves with increasing positive oxide fixed charge(decreasing negative oxide fixed charge) .................................................111 圖4.38 C-f and Loss-f performance of BZT(500nm 500℃)/Ta2O5(50nm 200℃)/HRS structure at Microwave frequency........112 圖4.39 C-f and Loss-f performance of BZT(500nm 600℃)/Ta2O5(50nm 200℃)/HRS structure at Microwave frequency........113 圖4.40 C-f and Loss-f performance of BZT(500nm 700℃)/Ta2O5(50nm 200℃)/HRS structure at Microwave frequency........114 圖4.41 C-f and Loss-f performance of BZT(500℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (50nm 200℃)/HRS structure at Microwave frequency... ..................................115 圖4.42 C-f and Loss-f performance of BZT(600℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (50nm 200℃)/HRS structure at Microwave frequency................................. ....116 圖4.43 C-f and Loss-f performance of BZT(700℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (50nm 200℃)/HRS structure at Microwave frequency......................................117 圖4.44 BZT(600℃500nm)/Ta2O5(50nm)/HRS結構LOSS-V高頻特性圖.......................................................118 圖4.45 BZT(600℃500nm)/Ta2O5(100nm)/HRS結構LOSS-V高頻特性圖.......................................................118 圖4.46 BZT(600℃500nm)/Ta2O5(200nm)/HRS結構LOSS-V高頻特性圖.......................................................119 圖4.47 BZT(600℃ 500nm)/ (Ta2O5)0.929(TiO2)0.071 (50nm)/HRS結構LOSS-V高頻特性圖...................... ..............119 圖4.48 BZT(600℃500nm)/ (Ta2O5)0.929(TiO2)0.071 (100nm)/HRS結構LOSS-V高頻特性圖.....................................120 圖4.49 BZT(600℃ 500nm)/ (Ta2O5)0.929(TiO2)0.071 (200nm)/HRS結構LOSS-V高頻特性圖.....................................120 圖4.50 XRD results of BZT(600℃ 500nm)/Ta2O5(50nm、100nm、200nm)/HRS...............................................121 圖4.51 XRD results of BZT(600℃ 500nm)/ (Ta2O5)0.929(TiO2)0.071 (50nm、100nm、200nm)/HRS...........................121 圖4.52 C-f and Loss-f performance of BZT(500nm 600℃)/Ta2O5(50nm)/HRS structure at Microwave frequency..............122 圖4.53 C-f and Loss-f performance of BZT(500nm 600℃)/Ta2O5(100nm)/HRS structure at Microwave frequency.............123 圖4.54 C-f and Loss-f performance of BZT(500nm 600℃)/Ta2O5(200nm)/HRS structure at Microwave frequency.............124 圖4.55 C-f and Loss-f performance of BZT(600℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (50nm)/HRS structure at Microwave frequency............. ..................................125 圖4.56 C-f and Loss-f performance of BZT(600℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (100nm)/HRS structure at Microwave frequency................................................126 圖4.57 C-f and Loss-f performance of BZT(600℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (200nm)/HRS structure at Microwave frequency................................................127 圖4.58 TEM Cross-section image of BZT(500nm 600℃)/Ta2O5(50nm)/HRS structure....... .............................128 圖4.59 TEM Cross-section image of BZT(500nm 600℃)/Ta2O5(100nm)/HRS structure....................................129 圖4.60 TEM Cross-section image of BZT(500nm 600℃)/Ta2O5(200nm)/HRS structure....................................130 圖4.61 C-V and Loss-V measurements of BZT(500nm 600℃)/Ta2O5(50 nm)/HRS structure....................................133 圖4.62 C-V and Loss-V measurements of BZT(600℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (50nm)/HRS................... ...132 圖4.63 C-V and Loss-V measurements of BZT(500nm 600℃)/Ta2O5(50 nm)/HRS structure annealed in N2 atmosphere..........133 圖4.64 C-V and Loss-V measurements of BZT(500℃ 500nm)/(Ta2O5)0.929(TiO2)0.071 (500nm)/HRS annealed in N2 atmosphere............................... ...............133 圖4.65 C-f and Loss-f of BZT/Ta2O5 (50nm)/HRS............135 圖4.66 C-f and Loss-f of BZT/(Ta2O5)0.929(TiO2)0.071 (50nm)/HRS...............................................136 圖4.67 Equivalent circuit of BZT/buffer /HRS structure..137 圖4.68 Simulation structure in HFSS..................... 138 圖4.69 Simulated results of BZT(500nm)/HRS...............139 圖4.70 Simulated results of BZT(500nm)/buffer(50nm)/HRS..140

    (1).
    T. B. Wu , C. M. Wu, and M. L. Chen, “Highly Insulation Barium Zirconate - Titanate Thin Films Prepared by RF Magnetron Sputtering for Dynamic Random Access Memory Applications”, Appl. Phys. Lett., 69(18), (1996) 2659.
    (2).
    J. W. Zhai, S. B. Yao, L. Y. Zhang, and H. Chen, “Dielectric and Ferroelectric Properties of Ba(Zr0.35Ti0.65)O3 Thin Films Grown by a Sol-gel Process,” Journal of Electroceramics,11,157-161, (2003).
    (3).
    Y. Zhi, A. Chen, G. Ruyan, and A.S. Bhalla, “Dielectric Properties and High Tunability of Ba(Ti0.7Zr0.3)O3 Ceramics under DC Electric Field,” Applied Physics Letters, vol 81, No.7, (2002)
    (4).
    W. S. Choi, B. S. Jang, D. G. Lim, J. Yi, B.Y. Hong, ”Characterization of Ba(Zr0.2Ti0.8)O3 Thin Films Deposited by RF-magnetron Sputtering,” Journal of Crystal Growth, 237-239, (2002), 438-442.
    (5).
    J.-Y. Gan, Y. C. Chang, and T. B. Wu, “Dielectric Property of (TiO2)x(Ta2O5)1-x Thin Films” Appl. Phys. Lett., Vol. 72, No. 3, 19 January 1998.
    (6).
    S. Gevorgian, A. Vorobiev, D. Kuylenstierna, A. Deleniv, S. Abadei, A. Eriksson, and P. Rundqvist, ” Silicon Substrate Integrated Ferroelectric Microwave Components,” Integrated Ferroelectrics, 66: 125–138, 2004
    (7).
    www.agilematerials.com
    (8).
    B. Acikel, Y. Liu, A. C. Nagra, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A.York, Dig. IEEE IMS’2001, p. 1191.
    (9).
    F. W. Van Keus , R. R. Romanofsky, D. Y. Bohman, M. D. Winters, and F. A.
    Miranda, Appl. Phys. Lett. 71 , 3075 (1997).
    (10).
    E. Carlsson, P. Petrov, R. Chakalov, P. Larsson, Z. Ivanov, and S. Gevorgian, Inst. of Phys. Conf. Ser. 158, 339 (1997).
    (11).
    B. Kozyrev, M. M. Gaidukov, A. G. Gagarin, A. V. Tumarkin, and S. V. Razumov,Tecn. Phy . Letters 28, 51 (2002).
    (12).
    S. W. Kirchoefer, J. M. Pond, A.C. Carter, W. Chang, K. K. Agarwal, J. S. Horwitz, and D. B. Chrisley, Microwave and Optical Technology Letters 18, 168 (1998).
    (13).
    S. Gevorgian and E. Kollberg, IEEE Trans. Micr. Theory Techn. 49, 2117 (2001).
    (14).
    B. H. Park, Y. Gim, Y. Fan, and Q. X. Jia, “High Nonlinearity of Ba0.6Sr0.4TiO3 Films Heteroepitaxially Grown on MgO Substrates”, Appl. Phys. Lett. Vol. 77, No. 16, (2000).
    (15).
    T. Ayguavives, A. Tombak, J.P. Maria, G. T. Stauf, Craig Ragaglia, Jeff Roeder, Amir Mortazawi, and Angus I. Kingon, “Physical Properties of (Ba,Sr)TiO3 Thin Films Used for Integrated Capacitors in Microwave Applications”, IEEE, (2001).
    (16).
    A. Tombak, J.P. Maria, F. Ayguavives, Zhang Jin, G. T. Stauf, Angus I. Kingon, and A. Mortazawi,“Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireless Components Letters, Vol. 12, No. 1, (2002).
    (17).
    C. M. Carlson, T. V. Rivkin, P. A. Parilla, J. D. Perkins, D. S. Ginley, A. B. Kozyrev, V. N. Oshadchy, and A. S. Pavlov, “Large Dielectric Constant (ε/ε0>6000) Ba0.4Sr0.6TiO3 Thin Films for High-Performance Microwave Phase Shifters”, Appl. Phys. Lett. Vol. 76, No. 14, (2000).
    (18).
    S. Hyun, J. H. Lee, S. S. Kim, K. Char, S. J. Park, J. Sok, and E. H. Lee, “Anisotropic Tuning Behavior in Epitaxial Ba0.5Sr0.5TiO3 Thin Films”, Appl. Phys. Lett. Vol. 77, No. 19, (2000).
    (19).
    黃聆惠, “磁控濺鍍BZT薄膜製成MFIS變容器之高頻與微波特性研究“, 清華大學,碩士論文,(2005)
    (20).
    I. Palecchi, G. Grassano, D. Marre, L. Pellegrino, M. Putti, and A. S. Siri, Appl. Phys. Lett. 78, 2244 (2001)
    (21).
    S. Gevorgian, Int. Journal of RF and Microwave Computer Aided Design 8, 433 (1998).
    (22).
    A. Deleniv, S. Abadei, and S. Gevorgian, Proc. EuMC 483 (2003).
    (23).
    J.Bellotti, E. K. Akdogan, and A. Safari, “Structure and Dielectric Characterization of SrTiO3 and BST Thin Films for Microwave Applications”, IEEE, (2001).
    (24).
    D. M. Pozar ,”Microwave Engineering,” 2nd edition, ch10, P587.
    (25).
    D. Pozar, “Microwave Enginrering”, published by John Wiley & Sons, INC.
    (26).
    S. Gevorgian, S. Abadei, H. Berg, and H. Jacobsson, Dig. IEEE IMS’2001.
    (27).
    施修正,“利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜之研究”, 清華大學, 博士論文, (1999).
    (28).
    劉恆睿, ”利用磁控濺鍍法在鎳酸鑭電極上沉積鋯鈦酸鋇薄膜作為微波變容器之研究,” 清華大學, 碩士論文,(2003)
    (29).
    J-Y. Gan,Y.C. Chang,and T.B. Wu,“Dielectric properties of (Ta2O5)1-x(TiO2)x thin films“ Appl. Phys. Lett.72(1998)
    (30).
    M. W. Cole, P. C. Joshi, M. Ervin, and M. Wood,R.L. Pfeffer,“Evaluation of Ta2O5 as a Buffer Layer Film for Integration of Microwave Tunable Ba1-xSrxTiO3 Based Thin Films with Silicon Substrates ”, J. Appl. Phys. 92(2002).
    (31).
    M.W. Cole,W.D. Nothwang,J.D. Demaree and S. Hirsch,“Integration of Ba1-xSrxO3-Based Active Thin Films with Silicon-Compatible Materials and Process Science Protocols to Enable Affordable On-Tthe-Move Communication Technologies.”, J. Appl. Phys. 98(2005)
    (32).
    H.S. Kim,H.G. KIim,I.D. Kim,K.B. Kim and J.C. Lee,“High-Tunability and Low-Micorwave-Loss Ba0.6Sr0.4TiO3 Thin Films Grown on High-Resistivity Si Substrates using TiO2 Buffer Layer”, Appl. Phys. Lett. 87(2005)
    (33).
    I.D. Kim, H.L. Tuller, H.S. Kim, J.S. Park,“High Tunability (Ba,Sr)TiO3 Thin Films Grown on Atomic Layer Deposited TiO2 and Ta2O5 Buffer Layer”, Appl. Phys. Lett. 85(2004)
    (34).
    Y. Xu, “Ferroelectric Materials and Their Applications”, published by North-Holland Netherlands, (1991).
    (35).
    陳銘森, “□酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1997)
    (36).
    吳啟明, “利用濺鍍法以□酸鑭為電極製作動態記憶體之鈦酸鍶薄膜的研究”, 清華大學, 博士論文, (1997)
    (37).
    B. Jaffe, W. R. Cook, Jr and H. Jaffe, “Piezoelectric Ceramics”, published by Academic Press Limited, (1971) 94.
    (38).
    林居南, “添加劑對鈦酸鋇陶瓷電性及相變化之影響”, 清華大學, 博士論文, (1990).
    (39).
    吳朗, “電子陶瓷-介電”, 全欣資訊圖書, (1994).
    (40).
    陳美玲, ”DRAM應用之鋯鈦酸鋇介電薄膜射頻磁控濺鍍之研究”, 清華大學, 碩士論文, (1996).
    (41).
    蘇國輝, 李中夏, “以噴霧裂解法沉積鋯鈦鋇(BZT)薄膜, 中國材料科學學會1996年度年會論文集, 2, (1996) 159.
    (42).
    方滄澤, 李瑞池, “以溶膠-凝膠法製備純鈦酸鋇和鋯添加鈦酸鋇毫微晶薄膜”, 中國材料科學學會1996年度年會論文集, 2, (1996) 163.
    (43).
    陳美玲, 吳啟明, 吳泰伯, “鋯鈦酸鋇介電薄膜之射頻磁控濺鍍與特性”, 中國材料科學學會1996年度年會論文集, 2, (1996) 167.
    (44).
    S. Hoffmann and R. M. Waser, “Dielectric Properties, Leakage Behavior, and Resistance Degradation of Thin Films of the Solid Solution Series Ba(Ti1-xZrx)O3 “, Integrated Ferroelectrics 17(1-4), (1997) 141.
    (45).
    T. B. Wu, C. M. Wu, and M. L. Chen, “Dielectric and Leakage Current Characteristics of Ba(Ti1-xZrx)O3 Thin Film Deposited by RF Magnetron Sputtering”, Thin Solid Film 334(1-2), (1996) 77.
    (46).
    H. Watanabe, N. Aoto, S. Adochi, T. Ishijima, E. Ikawa,and K. Terada,“New Stacked Capacitor Structure Using Hemispherical-Grain Polycrystalline Silicon Electrodes”,Appl.Phys.Lett.Vol.58,no.3,pp.251,1991.
    (47).
    Masaru Shimizu, Masataka Sugiyama, Jpn .J. Appl. Phys. Vol.33(1994)
    (48).
    Yoichiro Masuda and Akira Baba, Jpn. J. Appl. Phys. Vol.35(1996)
    (49).
    Y. Yano, K. Lijima, Y. Daitoh,and T. Terashima. J. Appl. Phys.76(12)15 December 1994.
    (50).
    K .Ohta, VLSI Dynamic Memory Cell, Chapter 21 (1991), p280.
    (51).
    T. Aoyama , J.Electrochem.Soc.Vol.143.No3 March 1996
    (52).
    S. Kamiyama, J. Electrochem. Soc.Vol.141,No5,May 1994.
    (53).
    J. L. Autran,P. Paillet. Sensor and Actuators A 51(1995) 5-8
    (54).
    S. W. Park and Y. K. Baek ,Journal of Electronic Materials, Vol 21, No. 6, 1992
    (55).
    Yasushiro Nishioka,J.Appl.Phys.61(6) 15 march 1987.
    (56).
    R. F. Cava, W. F. Peck Jr ,and J. J. Krajewski, Nature. Vol. 377.21 September 1995
    (57).
    A. J. Moulson and J. M. Herbert, ”Electroceramics” Materials, Properties, Applications, (1990), p52.
    (58).
    S. Abadei, S. Gevorgian, C.-R. Cho and A. Grishin, “Low-frequency and Microwave Performances of Laser-Ablated Epitaxial Na0.5K0.5NbO3 films on High-Resistivity SiO2/Si Substrates,” J. Appl. Phys. Vol. 91, No. 4, 15 February 2002
    (59).
    S. M. Sze, Semiconductor Devices Physics and Technology, Wiley, New York, 1985.
    (60).
    S. S. Gevorgian, T. Martinsson, and Peter L. J. Linnkr, “CAD Models for Multilayered Substrate Interdigital Capacitors,” IEEE Transaction on Microwave Theory and Technique, Vol. 44, No. 6, June 1996.
    (61).
    R. K. Hoffman, Handbook of Microwave Integrated Circuits. Norwell, MA: Artech, 1987.
    (62).
    S. S. Gevorgian, P. Lmntr, and E. Kollherg, “CAD Models for Shielded Multilayered CPW,” IEEE Microwave Theory Tech, vol 43..
    (63).
    C. Veyers, and F. Hanna, “Extention of The Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimensions,” Int. J. Electronics, vol. 48, no. 1, pp. 47-56. 1980.
    (64).
    G. Ghione and C. Naldi, “Coplanar Waveguides for MMIC Applications: Effects of Upper Shielding, Conductor Hacking, Finite Extent Ground Planes, and Line-to-line Coupling,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 3, pp. 260-267, 1987.
    (65).
    S. Gevorgian, H. Berg, H. Jacobsson, and T. Lewin ,“Basic Parameters of Coplanar-Strip Waveguides on Multilayer Dielectric/Semiconductor Substrates,Part 1:High Permittivity Superstrates”, IEEE microwave Magazine, June 2003.
    (66).
    www.ndted.org/GeneralResources/MaterialProperties/ET/ET_matlprop_Misc_Matls.htm
    (67).
    Dieter K. Schroder, “Semiconductor Material and Device Characterization,” 2nd edition, ch6, P337-P339.
    (68).
    R. Beyers , “Thermodynamic Considerlation in Refractpry Metal-Silicon-Oxygen System” , J. Appl. Phys .56(1),1 July, 1984
    (69).
    Y.M. Chiang, D. Birnie, W. David. Kingery, “Physical Ceramics Principles for Ceramic Science and Engineering”,p 144.
    (70).
    R. N. Simons, “Coplanar Waveguide Circuits, Components and System”, Ch6, Coplanar striplines.
    (71).
    Wen-An Lan, Tsan-Chun Wang, Ling-Hui Huang, and Tai-Bor Wu,“ Interfacial varactor characteristics of ferroelectric thin films on high-resistivity Si substrate”, Appl. Phys. Lett. (to be published).
    (72).
    Prof. Tai-Bor Wu,“Interfacial varactor characteristics of ferroelectric thin films deposited on high-resistivity Si in metal-oxide-semiconductor Structure”.Invited speak in ISIF 2006,Honolulu,Hawaii.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE