簡易檢索 / 詳目顯示

研究生: 卓慶昌
Cho, Ching Chang
論文名稱: 探討人類鈣離子結合S100A4 與EGF及Amlexanox之間的交互作用
Interaction of human calcium-bound S100A4 with EGF and Amlexanox
指導教授: 余靖
Yu, Chin
口試委員: 陳金榜
Chen, Chinpan
莊偉哲
Chuang, Woei Jer
洪嘉呈
Homg, Jia Cherng
江昀緯
Chiang, Yun Wei
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 核磁共振蛋白質結構表皮生長因子氨來占諾S100蛋白
外文關鍵詞: NMR, Protein structure, EGF, Amlexanox, S100 protein
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類S100蛋白質家族是由一群小分子的酸性蛋白所組成,這個蛋白質家族在結構上具有高度相似性,它們皆具有兩個EF-hand motif能與鈣離子結合,在與鈣離子結合後會改變其構形並與目標蛋白產生交互作用,進而引發一連串的生化反應,S100A4為S100蛋白質家族其中一員且EGF蛋白是能與S100A4結合的標的蛋白之一。人類表皮生長因子(Human Epidermal Growth Factor, hEGF)可促使多種生物細胞(包括腫瘤細胞)的增生分化,而此生物活性是透過EGF蛋白與細胞膜表面上的特定受體(EGFR)結合進而誘導產生一系列訊息傳導所致。在先前的研究中,作者利用西方點墨法指出S100A4蛋白會與EGF蛋白產生交互作用。氨來呫諾(Amlexanox, AMX)是一種特殊的抗發炎及抗過敏的藥物,目前主要是用來治療口腔潰瘍,在本實驗中我們以HSQC滴定證實AMX與S100A4之間有交互作用。我們利用了螢光光譜儀(fluorescence spectroscopy)及核磁共振光譜儀(NMR spectroscopy)證明了AMX與EGF兩者分別與S100A4之間的交互作用關係,再加上我們解出的複合體水溶液結構,接著以WST-1 assay研究三者之間在生物活性方面的調控,綜合以上研究成果希望能進一步的探討S100A4、EGF與AMX三者在生物活性調控機轉之間的關係。


    Human S100 proteins belong to a family of small, acidic protein which shares high structure similarities with each other: they all have two EF-hand motifs and could bind calcium. When S100A4 binds with calcium, it will change its conformation and interact with their target protein. Human epidermal growth factor ( hEGF ) is the target protein which is also one of the high affinity ligands of EGFR. EGF/EGFR system promotes cell survival, growth and differentiation via the activation of several integrated signaling pathways. In recent studies, scientists used western blotting to show that S100A4 could interact with EGF. Amlexanox is an anti-inflammatory and antiallergic drug used to treat recurrent aphthous ulcers. In this study, we found AMX interact with S100A4 using HSQC titrations. We elucidated the interactions of S100A4 with EGF and AMX using fluorescence spectroscopy and NMR spectroscopy. We solved the solution complex structures and investigated the bioactivities using WST-1 assay. The results we reported could help to investigate the biological mechanism among S100A4, EGF and AMX.

    目錄 摘要 1 Abstract 2 目錄……………………………………………………………………..III 圖目錄 4 表目錄 1 縮寫表 10 第一章 前言 1-1 S100蛋白家族介紹與S100A4之特性及結構……………………1 1-2 EGF蛋白之特性及結構……………………………………………5 1-3 表皮生長因子受體( EGFR )與配體( EGF )的相互作用…………7 1-4 表皮生長因子( EGF)與S100A4蛋白之間的交互作用…………11 1-5 藥物Amlexanox(AMX)的結構與特性…………………………...13 1-6 生物核磁共振( NMR)技術介紹…………………………………..14 1-7 蛋白質分子的NMR光譜循序判定(sequential assignment )…….15 1-7.1蛋白質分子的骨架循序判定…………………………………….15 1-7.2蛋白質分子的支鏈循序判定…………………………………….18 1-8 找尋限制條件…………………………………………………….19 1-8.1 距離限制條件( NOE distance constraints)………………………20 1-8.2 雙面角限制條件…………………………………………………20 1-8.3 氫鍵限制條件……………………………………………………21 1-8.4 結構計算…………………………………………………………21 1.9 HADDOCK ( high ambiguity driven docking )介紹……………..23 第二章 材料與方法 2-1 S100A4與EGF蛋白質之製備…………………………………….25 2-1.1 S100A4重組質體之取得………………………………………...25 2-1.2 S100A4蛋白質之表現…………………………………………...26 2-1.3 S100A4蛋白質之純化…………………………………………...28 2-1.4 EGF重組質體之取得…………………………………………….31 2-1.5 EGF蛋白質之表現……………………………………………….32 2-1.6 EGF蛋白質之純化……………………………………………….33 2-1.7 S100A4與EGF蛋白質之濃度測定……………………………..35 2-2 蛋白質之基本性質鑑定…………………………………………...36 2-2.1蛋白質質量鑑定………………………………………………….36 2-2.2 螢光放射光譜( Fluorescence spectrum )………………………..37 2-3 核磁共振實驗……………………………………………………...39 2-3.1 1H-15N HSQC titration…………………………………………….39 2-3.2 三維核磁共振實驗………………………………………………40 第三章 結果與討論 3-1 S1004蛋白質在大腸桿菌之表現與純化………………………….41 3-1.1 S100A4蛋白質的大量表現與純化……………………………...41 3-1.2 EGF蛋白質的大量表現與純化………………………………….43 3-1.3 S100A4與EGF之分子量鑑定………………………………….45 3-2 S100A4蛋白質結構之分析與比較……………………………….47 3-2.1 S100A4氨基酸序列判定………………………………………..47 3-2.2 S100A4結構計算………………………………………………...51 3-2.3 S100A4的結構解析……………………………………………..55 3-2.4 S100A4的NMR與X-ray結構的比較…………………………56 3-3 S100A4與EGF蛋白交互作用之探討……………………………59 3-3.1 HSQC滴定……………………………………………………….59 3-3.2螢光實驗………………………………………………………….64 3-3.3利用HADDOCK預測S100A4與EGF複合物結構…………..66 3-3.4利用WST-1 assay研究S100A4與EGF的生物活性………….69 3-4 S100A4與AMX交互作用之探討………………………………..70 3-4.1 HSQC滴定……………………………………………………….70 3-4.2利用HADDOCK預測S100A4與AMX複合物結構………….72 3-4.3利用WST-1 assay研究S100A4與AMX的生物活性…………74 3-5 AMX、EGF與S100A4活性關係之研究…………………………76 參考文獻………………………………………………………………..79 附錄……………………………………………………………………..85 圖目錄 圖1-1 Apo-S100A4結構與Ca2+-bound S100A4結構…………………..4 圖1-2 S100A4(單體)接上鈣離子後所產生的結構變化示意圖………..4 圖1-3 S100B與P53反應示意圖………………………………………….5 圖1-4 EGF/EGFR的結晶結構…………………………………………...9 圖1-5 EGFR區域圖與表皮生長因子受體激活機制的示意圖……….10 圖1-6 測試EGFR配體們與S100A4之間交互作用之結果…………...12 圖1-7 Amlexanox的化學結構式……………………………………….13 圖1-8 S10013與Amlexanox的複合體結構…………………………….14 圖1-9 HNCA 與 HN(CO)CA………………………………………….16 圖1-10 CBCANH 與 CBCA(CO) HN………………………………...17 圖1-11 HNCO 與HN(CA)CO……………………………...................17 圖1-12 HBHA(CO)NH、HC(CO)NH及 CC(CO)NH…………………18 圖1-13 利用HC(CO)NH 與 CC(CO)NH判定Valine的支鏈…………19 圖1-14 (左)HCCH-TOSCOY 與 (右)HCCH-COSY………………….19 圖1-15 雙面角的示意圖………………………………………………21 圖1-16 結構計算流程簡單示意圖…………………………………….22 圖2-1 A. pET21 vector map。B. mutant S100A4的蛋白質序列………26 圖2-2 A. pET32 vector map。B. EGF的蛋白質序列…………………..32 圖 3-1 HIC管柱純化後電泳凝膠圖…………………………………..42 圖 3-2 Q XL管柱純化電泳凝膠圖……………………………………43 圖3-3 His tag與Ni+2-NTA管柱結合知示意圖……………………….44 圖3-4 EGF經Ni管柱純化後將分析液製成樣品跑膠結果………….44 圖3-5 EGF蛋白質經由HPLC純化後的結果圖…………………......44 圖3-6 EGF蛋白質經由凍乾回溶後的結果圖………………………...45 圖 3-7 S100A4之 ESI-Mass結果……………………………………..46 圖 3-8 EGF之 ESI-Mass結果………………………………………...46 圖 3-9 以HNCA的strips來連結S100A4的骨架關聯性…………..48 圖 3-10 S100A4之1H-15N HSQC光譜……………………………….50 圖 3-11 S100A4之CSI的二級構預測圖……………………………..52 圖 3-12 20個最低能量S100A4結構的重疊…………………………53 圖3-13 S100A4雙聚體的二級結構示意圖…………………………...55 圖3-14 S100A4、S100A6及S100B的氨基酸序列比對圖………….57 圖3-15 S100A4的結構電荷分佈圖…………………………………...57 圖3-16 S100A4的 NMR與X-ray結構的比較圖……………………58 圖3-17 S100A4的C端正電荷殘基與EF-2 motif的負電荷殘基間的作用力……………………………………………………………………..59 圖3-18 EGF 滴定S100A4之HSQC疊圖……………………………61 圖3-19 將HSQC中有變化的訊號mapping至S100A4結構所得結果 …………………………………………………………………………..62 圖3-20 S100A4滴定EGF之HSQC疊圖……………………………63 圖3-21 將HSQC中有變化的訊號mapping至EGF蛋白水溶液結構所得結果…………………………………………………………………..64 圖3-22加入不同比例之S100A4至EGF蛋白後所觀察到螢光訊號之改變……………………………………………………………………..65 圖3-23 1/ΔF對1/[S]作圖,從趨勢線斜率及截距可求得KD…………66 圖3-24 S100A4與EGF 的HADDOCK複合物結構之間的接觸面圖 …………………………………………………………………………………………………………….67 圖3-25 S100A4與EGF之接觸面圖………………………………….68 圖3-26 S100A4與EGF 的HADDOCK複合物結構………………..68 圖3-27 S100A4與EGF的WST-1 assay之結果……………………..70 圖3-28 AMX滴定S100A4之HSQC疊圖…………………………...71 圖3-29 將HSQC中有變化的訊號mapping至S100A4結構所得結果 …………………………………………………………………………..72 圖3-30 S100A4與AMX的HADDOCK複合物結構………………..73 圖3-31 S100A4與AMX之接觸面圖…………………………………74 圖3-30 AMX、EGF與S100A4的WST-1 assay之結果……………..75 圖3-31 AMX、EGF與S100A4的複合體結構……………………….76 圖3-32 AMX、EGF與S100A4三者的Co-immunoprecipitation結果 …………………………………………………………………………..77 圖3-33 模擬AMX、EGF、S100A4與EGFR結合的結果…………78 表目錄 表2-1 S100A4純化過程使用之緩衝液配方…………………………..31 表2-2 EGF純化過程使用之緩衝液配方……………………………..35 表3-1 S100A4結構計算之參數統計………………………………….54 表3-2 S100A4與EGF HADDOCK結構分析表……………………...67

    Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand calcium binding proteins. Biochimica et biophysica acta (1742):69-79
    Bielicky T (1963) LIGHT-SENSITIVE PSORIASIS AND ANTIMALARIAL DRUGS. The Journal of investigative dermatology (41):1-2
    Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell (103):311-320
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta crystallographica Section D, Biological crystallography (54):905-921
    Camby I, Lefranc F, Titeca G, Neuci S, Fastrez M, Dedecken L, Schafer BW, Brotchi J, Heizmann CW, Pochet R, Salmon I, Kiss R, Decaestecker C (2000) Differential expression of S100 calcium-binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumours. Neuropathology and applied neurobiology (26):76-90
    Carreira MJ, Cabello D, Penedo MG, Mosquera A (1998) Computer-aided diagnoses: automatic detection of lung nodules. Medical physics (25):1998-2006
    Chan WY, Xia CL, Dong DC, Heizmann CW, Yew DT (2003) Differential expression of S100 proteins in the developing human hippocampus and temporal cortex. Microscopy research and technique (60):600-613
    Cho YG, Nam SW, Kim TY, Kim YS, Kim CJ, Park JY, Lee JH, Kim HS, Lee JW, Park CH, Song YH, Lee SH, Yoo NJ, Lee JY, Park WS (2003) Overexpression of S100A4 is closely related to the aggressiveness of gastric cancer. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica (111):539-545
    Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. The Journal of biological chemistry (237):1555-1562
    Cohen S, Carpenter G (1975) Human epidermal growth factor: isolation and chemical and biological properties. Proceedings of the National Academy of Sciences of the United States of America (72):1317-1321
    Davies BR, O'Donnell M, Durkan GC, Rudland PS, Barraclough R, Neal DE, Mellon JK (2002) Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer. The Journal of pathology (196):292-299
    Donato R, Heizmann CW (2010) S100B Protein in the Nervous System and Cardiovascular Apparatus in Normal and Pathological Conditions. Cardiovascular psychiatry and neurology (2010):929712
    Duelli A, Kiss B, Lundholm I, Bodor A, Petoukhov MV, Svergun DI, Nyitray L, Katona G (2014) The C-terminal random coil region tunes the Ca(2)(+)-binding affinity of S100A4 through conformational activation. PloS one (9):e97654
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell (61):759-767
    Fujiuchi S, Ohsaki Y, Kikuchi K (1997) Suramin inhibits the growth of non-small-cell lung cancer cells that express the epidermal growth factor receptor. Oncology (54):134-140
    Garrett SC, Varney KM, Weber DJ, Bresnick AR (2006) S100A4, a mediator of metastasis. The Journal of biological chemistry (281):677-680
    Gongoll S, Peters G, Mengel M, Piso P, Klempnauer J, Kreipe H, von Wasielewski R (2002) Prognostic significance of calcium-binding protein S100A4 in colorectal cancer. Gastroenterology (123):1478-1484
    Grigorian M, Andresen S, Tulchinsky E, Kriajevska M, Carlberg C, Kruse C, Cohn M, Ambartsumian N, Christensen A, Selivanova G, Lukanidin E (2001) Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. The Journal of biological chemistry (276):22699-22708
    Hansen LH, Knudsen S, Sorensen SJ (1998) The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Current microbiology (36):341-347
    Hernan R, Fasheh R, Calabrese C, Frank AJ, Maclean KH, Allard D, Barraclough R, Gilbertson RJ (2003) ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer research (63):140-148
    Huang HW, Mohan SK, Yu C (2010) The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin. Biochemical and biophysical research communications (402):705-710
    Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proceedings of the National Academy of Sciences of the United States of America (103):1159-1164
    Ismail NI, Kaur G, Hashim H, Hassan MS (2008) S100A4 overexpression proves to be independent marker for breast cancer progression. Cancer cell international (8):12
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. Journal of molecular biology (3):318-356
    Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell (137):1293-1307
    Kiryushko D, Novitskaya V, Soroka V, Klingelhofer J, Lukanidin E, Berezin V, Bock E (2006) Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein. Molecular and cellular biology (26):3625-3638
    Klingelhofer J, Moller HD, Sumer EU, Berg CH, Poulsen M, Kiryushko D, Soroka V, Ambartsumian N, Grigorian M, Lukanidin EM (2009) Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein. The FEBS journal (276):5936-5948
    Kozlova EN, Lukanidin E (1999) Metastasis-associated mts1 (S100A4) protein is selectively expressed in white matter astrocytes and is up-regulated after peripheral nerve or dorsal root injury. Glia (27):249-258
    Kriajevska M, Fischer-Larsen M, Moertz E, Vorm O, Tulchinsky E, Grigorian M, Ambartsumian N, Lukanidin E (2002) Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1). The Journal of biological chemistry (277):5229-5235
    Landriscina M, Prudovsky I, Mouta Carreira C, Soldi R, Tarantini F, Maciag T (2000) Amlexanox reversibly inhibits cell migration and proliferation and induces the Src-dependent disassembly of actin stress fibers in vitro. The Journal of biological chemistry (275):32753-32762
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of biomolecular NMR (8):477-486
    Leclerc E, Fritz G, Vetter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochimica et biophysica acta (1793):993-1007
    Lemmon MA, Bu Z, Ladbury JE, Zhou M, Pinchasi D, Lax I, Engelman DM, Schlessinger J (1997) Two EGF molecules contribute additively to stabilization of the EGFR dimer. The EMBO journal (16):281-294
    Linge JP, Nilges M (1999) Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. Journal of Biomolecular NMR (13):51-59
    Lu HS, Chai JJ, Li M, Huang BR, He CH, Bi RC (2001) Crystal structure of human epidermal growth factor and its dimerization. The Journal of biological chemistry (276):34913-34917
    Malashkevich VN, Varney KM, Garrett SC, Wilder PT, Knight D, Charpentier TH, Ramagopal UA, Almo SC, Weber DJ, Bresnick AR (2008) Structure of Ca2+-bound S100A4 and its interaction with peptides derived from nonmuscle myosin-IIA. Biochemistry (47):5111-5126
    Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochemical and biophysical research communications (322):1111-1122
    Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochimica et biophysica acta (1763):1282-1283
    Massague J, Pandiella A (1993) Membrane-anchored growth factors. Annual review of biochemistry (62):515-541
    Miller GA, Feldman JD (1977) Effect of macrophages and antibodies on in vivo growth of Moloney sarcoma in the rat. Journal of immunology (Baltimore, Md : 1950) (119):1445-1451
    Montelione GT, Wuthrich K, Burgess AW, Nice EC, Wagner G, Gibson KD, Scheraga HA (1992) Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Biochemistry (31):236-249
    Moroz OV, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB (2003) Multiple structural states of S100A12: A key to its functional diversity. Microscopy research and technique (60):581-592
    Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell (110):775-787
    Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, Heizmann CW, Kroneck PM, Fritz G (2007) Structural and functional insights into RAGE activation by multimeric S100B. The EMBO journal (26):3868-3878
    Polakis P (2007) The many ways of Wnt in cancer. Current opinion in genetics & development (17):45-51
    Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics (Oxford, England) (23):381-382
    Rosty C, Ueki T, Argani P, Jansen M, Yeo CJ, Cameron JL, Hruban RH, Goggins M (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. The American journal of pathology (160):45-50
    Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R (2000) Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer research (60):1595-1603
    Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nature structural biology (7):570-574
    Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of biomolecular NMR (44):213-223
    Shishibori T, Oyama Y, Matsushita O, Yamashita K, Furuichi H, Okabe A, Maeta H, Hata Y, Kobayashi R (1999) Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family. The Biochemical journal (338 ( Pt 3)):583-589
    Smith SP, Shaw GS (1998) A change-in-hand mechanism for S100 signalling. Biochemistry and cell biology = Biochimie et biologie cellulaire (76):324-333
    Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT (2009) RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. Journal of translational medicine (7):17
    Srikrishna G (2012) S100A8 and S100A9: new insights into their roles in malignancy. Journal of innate immunity (4):31-40
    Takenaga K, Nakamura Y, Sakiyama S, Hasegawa Y, Sato K, Endo H (1994) Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin. The Journal of cell biology (124):757-768
    Teratani T, Watanabe T, Yamahara K, Kumagai H, Ishikawa A, Arai K, Nozawa R (2002) Restricted expression of calcium-binding protein S100A5 in human kidney. Biochemical and biophysical research communications (291):623-627
    Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, et al. (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature (309):418-425
    Vallely KM, Rustandi RR, Ellis KC, Varlamova O, Bresnick AR, Weber DJ (2002) Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry (41):12670-12680
    Venturi S, Venturi M (2009) Iodine in evolution of salivary glands and in oral health. Nutrition and health (20):119-134
    Ward CW, Hoyne PA, Flegg RH (1995) Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins (22):141-153
    Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. Journal of biomolecular NMR (4):171-180
    Wright NT, Cannon BR, Wilder PT, Morgan MT, Varney KM, Zimmer DB, Weber DJ (2009) Solution structure of S100A1 bound to the CapZ peptide (TRTK12). Journal of molecular biology (386):1265-1277
    Yap KL, Ames JB, Swindells MB, Ikura M (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins (37):499-507
    Zimmer DB, Weber DJ (2010) The Calcium-Dependent Interaction of S100B with Its Protein Targets. Cardiovascular psychiatry and neurology (2010)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE