簡易檢索 / 詳目顯示

研究生: 江桂槐
Kuei-Huai Chiang
論文名稱: 關於對稱阻尼振動系統的反譜問題
Inverse spectral problems for a class of damped vibrating systems
指導教授: 林文偉
Wen-Wei Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 27
中文關鍵詞: 反譜問題對稱阻尼振動系統
外文關鍵詞: damped vibrating systems
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇文章主要是在探討利用Jordan Pair以及Jordan Triple反求原本阻尼系統的方法,之後的重點會著重於對稱的系統上,找出其固定的演算法,並且證明給定不同類型的eigen-information時,能反求出對稱系統的條件分別有哪些.


    Solving the inverse spectral problems for damped vibrating systems, the Jordan pair and Jordan triple play an important role of the algorithm given by the conclusions in [08] and [11]. Although this topic had been analyzed in these papers, the method for re-constructing the original systems is calculating the eigenvectors matrix such that it has some special properties first, and then use it to solve the inverse spectral problem.
    In this paper we will restudy this part without choosing any special eigenvectors. Reversely, we will try to find more powerful conditions for this algorithm in the general sense, and explain the kind of eigen-information which can be solved by this algorithm.

    Contents 1 Introduction 3 2 Jordan Pair and Jordan Triple 5 3 Hyperbolic Systems (1) 8 4 Hyperbolic Systems (2) 12 5 General Symmetric Systems 15 6 Conclusions 25

    References
    [01] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review,
    43(2001), 235-286.
    [02] Gohberg, I., Lancaster, P. and Rodman, L., Spectral analysis of selfadjoint matrix polynomials,
    Annals of Mathematics, 112, 1980, pp. 34-71.
    [03] Gohberg, I., Lancaster, P. and Rodman, L., Matrix Polynomials, Academic Press, New
    York, 1982.
    [04] Golub, G., and Van Loan, C., Matrix Computations, 3rd. Edition, Johns Hopkins University
    press, Baltimore, 1996.
    [05] Guo, Chun-Hua, and Lancaster, P., Algorithms for hyperbolic quadratic eigenvalue problems,
    Mathematics of Computation, 74, 2005, pp. 1777-1791.
    [06] Higham, N.J., Tisseur, F., and Van Dooren, P. M., Detecting a definite Hermitian
    pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness
    problems, Linear Algebra and its Applications, 351/352, 2002, 455-474.
    [07] Lancaster, P., Isospectral vibrating systems. Part1: The spectral method, Linear Algebra
    and its Applications, (to appear).
    [08] Lancaster, P., and Prells, U., Inverse problems for damped vibrating systems, Journal of
    Sound and Vibration, 283, 2005, pp. 891-914.
    [09] Lancaster, P., and Rodman, L., Canonical forms for Hermitian matrix pairs under strict
    equivalence and congruence, SIAM Review, 47, 2005, pp. 407-443.
    [10] Lancaster, P., and Ye, Q., Inverse spectral problems for linear and quadratic matrix
    pencils, linear Algebra and its Applications, 107, 1988, pp. 293-309.
    [11] Lancaster, P., Inverse Spectral problems for semi-simple damped vibrating systems, September
    10, 2005.
    [12] M. T. Chu, B. Datta, W.-W. Lin, and S.-F. Xu, The spill-over phenomenon in quadratic
    model updating, Draft as of February 19, 2006.
    [13] M. T. Chu, Y.-C. Kuo and W.-W. Lin, On inverse quadratic eigenvalue problems with
    partially prescribed eigenstructure, SIAM J. Matrix Analysis Appl., 25(2004), 9951020.
    [14] Prells, U., and Lancaster, P., Isospectral vibrating systems. Part 2: Structure preserving
    transformations Operator Theory: Advances and Applications, (to appear).

    [15] W.-W. Lin and J.-N. Wang, Partial pole assignment for the quadratic pencil by output
    feedback control with feedback designs, Numer. Lin. Alg., 12(2005), 967-979.
    [16] Y.-C. Kuo, W.-W. Lin and S.-F. Xu ,On the general solution of partially described
    inverse quadratic eigenvalue problem and its applications, SIAM J. Matrix Analysis
    Appl., submitted, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE