簡易檢索 / 詳目顯示

研究生: 李柏潔
Li, Po-Chieh
論文名稱: 錳氧化物的合成與鑑定於氧氣還原反應及鋅空氣電池上之應用
Synthesis and Characterization of Mn Oxide-Based Electrocatalysts for the Oxygen Reduction Reaction in the Zn-Air Batteries
指導教授: 胡啟章
Hu, Chi-Chang
口試委員: 張文昇
Chang, Wen-Sheng
李岱洲
Lee, Tai-Chou
李紫原
Lee, Chi-Young
李元堯
Li, Yuan-Yao
馬振基
Ma, Chen-Chi
張仍奎
Chang, Jeng-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 211
中文關鍵詞: 鋅空氣電池二氧化錳氧氣還原反應碳黑二次鋅空氣電池a-MnO2/XC-72
外文關鍵詞: Zinc-air battery, Manganese dioxide, Oxygen reduction reaction, Carbon black, Rechargeable zinceair battery, a-MnO2/XC-72
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究旨在利用錳氧化物(MnOx)作為鋅空氣電池之空氣陰極觸媒,並探討其在材料與電化學行為上之變化差異。研究的第一部份是利用迴流法(reflux)將α-MnO2與碳黑XC-72合成複合觸媒材料α-MnO2/XC-72,並改變α-MnO2/XC-72中XC-72的含量來探究其於鋅空氣電池陰極催化氧氣還原的能力。鑒於碳黑材料的特性 (高比表面積與高電導性),因此隨著XC-72含量的增加,鋅空氣電池之電化學表現也隨之提升。然而,當XC-72含量過高時,在合成過程中α-MnO2會轉變成氧氣還原能力較差的錳氧化物「MnOOH」因而降低鋅空氣電池的電化學表現。經過XC-72含量的調整後,發現此鋅空氣電池陰極複合觸媒之最佳重量比α-MnO2:XC-72為1:1。在此最佳重量比例(1:1)下,鋅空氣電池於一般環境狀態中,在高電流密度(20 mAcm-2)與低電流密度(2 mAcm-2)之放電電壓分別為1.178與1.353 V;在經過變電流密度的測試後發現,此最佳重量比例的鋅空氣電池陰極複合觸媒之最高功率密度(peak power density)為67.51 mWcm-2,此功率密度表現與文獻相較有過之而無不及。以上的量測結果顯示,α-MnO2:XC-72在最佳重量比1:1下,於鋅空氣電池的應用有很高的發展潛力。
    本研究的第二部份是延續第一部份的成果,利用XC-72搭配七種不同的錳氧化物,在相同條件與狀況下作比較。透過旋轉電極(RRDE)、極化曲線與鋅空氣全電池的放電測試等一系列電化學量測後發現,這七種錳氧化物與XC-72之複合觸媒(MnOx/XC-72)對於氧氣還原的能力依序為 α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72。此部份之研究結果可作為日後對於錳氧化物在氧氣還原與鋅空氣電池研究的參考文獻。
    第三部份的研究重點在於設計新穎二次鋅空氣電池的結構,利用第一與第二部份之研究結果,將ORR最佳觸媒材料α-MnO2/XC-72塗佈於氣體擴散層(25BC碳紙)上作為氧氣還原電極;配合本實驗室OER部份的研究成果,選用尖晶石結構之金屬氧化物Fe0.1Ni0.9Co2O4塗佈於鈦網上作為OER電極。接著將OER與ORR電極壓合成二次鋅空氣電池之空氣電極,此新穎結構的二次鋅空氣電池於空氣中之最高功率密度(peak power density)為88.8 mWcm-2;在10 mAcm-2的電流密度下進行充放電循環測試,經過100圈的充放電循環之後,其充放電電壓差僅上升0.3 V。利用長時間(每階段10小時)充放電循環測試探討其長時間充放電穩定性與放電深度,其結果證明此新穎二次鋅空氣電池皆能維持平穩的充電(1.97 V)及放電(1.3 V)電壓。透過多種電化學量測法可證實,此種新穎二次鋅空氣電池具有相當優異之充放電循環能力及長時間充放電穩定性,可作為日後發展二次鋅空氣電池研究之參考文獻。
    本論文的最後一部份研究重點在於挑選合適之碳材作為觸媒擔體並應用於二次鋅空氣電池之空氣極觸媒。延續第一及第二章的成果,挑選α-MnO2作為主要之觸媒並搭配七種不同碳材以觀察其鋅空氣電池充放電行為與表現。藉由旋轉電極(RRDE)、極化曲線與鋅空氣電池的充放電循環測試等一系列電化學量測後發現,二次鋅空氣電池於空氣中之最高功率密度(peak power density)為使用α-MnO2搭配多壁奈米碳管(multi-walled carbon nanotubes) (管直徑~10 nm,命名為α-MnO2/CNT10)作為空氣極觸媒的66.3 mWcm-2。在10 mAcm-2的電流密度下進行鋅空氣電池的充放電測試,使用α-MnO2/CNT10作為空氣極觸媒的鋅空氣電池在經過100圈的充放電循環之後,其充放電電壓差僅上升0.09 V。透過研究結果可以進一步證明,多壁奈米碳管(multi-walled carbon nanotubes)相較於碳黑種類的材料是較適合用來作為二次鋅空氣電池的空氣極觸媒擔體材料。


    In the first part, due to the poor electric conductivity but the excellent catalytic ability for the oxygen reduction reaction (ORR), manganese dioxide in the α phase (denoted as α-MnO2) anchored onto carbon black powders (XC-72) has been synthesized by the reflux method. The ORR activity of such air cathodes have been optimized at the XC-72/α-MnO2 ratio equal to 1 determined by the thermogravimetric analysis.
    In the second part, manganese oxides (MnOx) in α-, β-, γ-, δ-MnO2 phases, Mn3O4, Mn2O3, and MnOOH are synthesized for systematically comparing their electrocatalytic activity of the oxygen reduction reaction (ORR) in the Zn-air battery application. The order of composites with respect to decreasing the ORR activity is: α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72. The discharge peak power density of Zn-air batteries varies from 61.5 mW cm-2 (α-MnO2/XC-72) to 47.1 mW cm-2 (Mn3O4/XC-72). The maximum peak power density is 102 mW cm-2 for the Zn-air battery with an air cathode containing α-MnO2/XC-72 under an oxygen atmosphere when the carbon paper is 10AA. The specific capacity of all full-cell tests is higher than 750 mAh g-1 at all discharge current densities.
    The third part demonstrates that a novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn–air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The performance of the proposed rechargeable Zn–air battery is superior to that of most other similar batteries reported in recent studies.
    In the final part, in spite of high mean transfer number and catalytic ability of the oxygen reduction reaction (ORR), α-MnO2 is lack of electric conductivity and specific surface area to fully exert the performance of rechargeable Zn-air battery. Here, carbons in various forms are chosen as substrates for uniform dispersion of α-MnO2 to form air electrode catalysts to evaluate the influences of carbon types on the catalytic activities of the ORR and OER (oxygen evolution reaction). The rechargeable Zn-air battery with the air electrode containing α-MnO2/CNT10 is stably operated for 100 cycles at 10 mA cm-2, which shows that an increase in 0.09 V between charge (decayed ca. 0.05 V) and discharge (decayed ca. 0.04 V) cell voltages.

    Abstract I 摘要 III 謝誌 V Table of Contents VII List of Tables XI List of Figures XII Chapter 1 Introduction and Objective 1 Chapter 2 Literature Review 5 2-1. Introduction of Zn-air battery 5 2-2. Mechanism 8 2-2-1. The mechanism of Zn-air battery 8 2-2-2. The theoretical capacity of Zn-air battery 10 2-2-3. The mechanism of oxygen reduction reaction 11 2-3. Configuration of Zn-air battery 13 2-3-1. Air electrode 13 2-3-1-1. Gas diffusion layer 13 2-3-1-2. Air electrode catalysts 16 2-3-1-2-1. Precious metal catalysts 17 2-3-1-2-2. Transition metal oxide and non-precious metal catalysts 21 2-3-1-2-3. Carbon-based catalysts 26 2-3-2. Zn electrode 30 2-3-3. Electrolyte 35 2-3-3-1. Aqueous electrolyte 35 2-3-3-2. Gel electrolyte 37 2-3-3-3. Ionic liquid electrolyte 37 2-4. Rechargeable Zn-air battery 39 Chapter 3 Experimental 45 3-1. Materials 45 3-2. Instruments 46 3-3. Preparation 47 3-3-1. Preparation of various phases Manganese oxides 47 3-3-1-1. Synthesis of α-MnO2, α-MnO2/XC-72, and MnO2/carbon 47 3-3-1-2. Synthesis of γ-MnO2 and γ-MnO2/XC-72 48 3-3-1-3. Synthesis of β-MnO2 and β-MnO2/XC-72 49 3-3-1-4. Synthesis of δ-MnO2 and δ-MnO2/XC-72 49 3-3-1-5. Synthesis of Mn2O3 and Mn2O3/XC-72 50 3-3-1-6. Synthesis of Mn3O4 and Mn3O4/XC-72 50 3-3-1-7. Synthesis of MnOOH and MnOOH/XC-72 51 3-3-2. Synthesis of Fe0.1Ni0.9Co2Ox 52 3-3-3. Preparation of Zn-air battery cathodes 53 3-3-3-1. Preparation of MnOx and MnOx/XC-72 air cathodes 53 3-3-3-2. Preparation of Fe0.1Ni0.9Co2Ox/Ti mesh electrodes 53 3-4. Zn-air battery configuration 54 3-5. Material characterization 56 3-6. Electrochemical measurements 57 Chapter 4 Results and Discussion 60 4-1. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries 60 4-1-1. Introduction 60 4-1-2. Characterization of α-MnO2/XC-72 electrocatalysts 61 4-1-2-1. X-ray diffraction (XRD) 61 4-1-2-2. Thermogravimetric analysis (TGA) 63 4-1-2-3. N2 adsorption/desorption (BET) 65 4-1-2-4. Transmission electron microscope (TEM) 67 4-1-2-5. Field-emission scanning electron microscope (FE-SEM) 69 4-1-3. Characterization of the oxygen reduction reaction (ORR) 69 4-1-3-1. Rotating ring-disk electrode voltammetry 69 4-1-3-1-1. Introduction of RRDE voltammetry 70 4-1-3-1-2. The results of RRDE voltammetry 73 4-1-3-2. Polarization curves of linear sweep voltammetry (LSV) 77 4-1-4. Discharge performance of Zn-air batteries 79 4-1-4-1. Short-time discharge 79 4-1-4-2. Long-time discharge 83 4-1-4-3. Polarization curve and multi-current step 85 4-1-5. Summary 87 4-2. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: effects of the crystalline of manganese oxides 88 4-2-1. Introduction 88 4-2-2. Characterization of MnOx/XC-72 electrocatalysts 91 4-2-2-1. X-ray diffraction (XRD) 91 4-2-2-2. Field-emission scanning electron microscope (FE-SEM) 93 4-2-2-3. Transmission electron microscope (TEM) 96 4-2-2-4. N2 adsorption/desorption (BET) 98 4-2-2-5. Thermogravimetric analysis (TGA) 100 4-2-3. Characterization of the oxygen reduction reaction (ORR) 102 4-2-3-1. Rotating ring-disk electrode voltammetry 102 4-2-3-2. Polarization curves of linear sweep voltammetry (LSV) 114 4-2-4. Discharge performance of Zn-air batteries 116 4-2-4-1. Short-time discharge 116 4-2-4-2. Long-time discharge 121 4-2-4-3. Polarization curve and multi-current step 123 4-2-5. Summary 128 4-3. Novel configuration of bifunctional air electrodes for rechargeable zinc–air batteries 130 4-3-1. Introduction 130 4-3-2. Textural characterization of Fe0.1Ni0.9Co2O4 132 4-3-3. Characterization of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) 133 4-3-3-1. Rotating ring disk electrode voltammetry 133 4-3-3-2. Polarization curves of linear sweep voltammetry (LSV) 136 4-3-4. Charge and discharge performance of rechargeable Zn-air batteries 139 4-3-4-1. Polarization curves 139 4-3-4-2. Charge–discharge–cycling curves 142 4-3-5. Summary 154 4-4. Development and characterization of bi-functional air electrodes for rechargeable zinc-air batteries: Effects of carbons 155 4-4-1. Introduction 155 4-4-2. Characterization of α-MnO2/carbon catalysts 157 4-4-2-1. X-ray diffraction (XRD) 157 4-4-2-2. Transmission electron microscope (TEM) and field-emission scanning electron microscope (FE-SEM) 158 4-4-3. Characterization of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) 162 4-4-3-1. Rotating ring disk electrode voltammetry 162 4-4-3-2. Polarization curves of linear sweep voltammetry (LSV) 167 4-4-4. Charge and discharge performance of rechargeable Zn-air batteries 170 4-4-4-1. Polarization curves 170 4-4-4-2. Charge–discharge–cycling curves 173 4-4-5. Summary 184 Chapter 5 Conclusions and Future Prospects 186 5-1. Conclusions 186 5-2. Future prospects 189 5-2-1. Modification of gas diffusion layer for rechargeable Zn-air battery 189 5-2-2. Fly rescuer 191 References 193 CV and Publications 209

    [1] Y. Li, H. Dai, Chem. Soc. Rev. 43 (2014) 5257-5275.
    [2] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, Electrochim. Acta 69 (2012) 295-300.
    [3] H. Ma, B. Wang, Y. Fan, W. Hong, Energies 7 (2014) 6549-6557.
    [4] V. Neburchilov, H. Wang, J.J. Martin, W. Qu, J. Power Sources 195 (2010) 1271-1291.
    [5] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 1 (2010) 2193-2203.
    [6] C. Chakkaravarthy, A. Waheed, H. Udupa, J. Power Sources 6 (1981) 203-228.
    [7] J.S. Lee, S. Tai Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Adv. Energy Mater. 1 (2011) 34-50.
    [8] M.A. Rahman, X. Wang, C. Wen, Journal of The Electrochemical Society 160 (2013) A1759-A1771.
    [9] P. Pei, K. Wang, Z. Ma, Appl. Energy 128 (2014) 315-324.
    [10] P. Sapkota, H. Kim, J. Indus. Eng. Chem. 15 (2009) 445-450.
    [11] J. Goldstein, I. Brown, B. Koretz, J. Power Sources 80 (1999) 171-179.
    [12] A. Kraytsberg, Y. Ein-Eli, J. Power Sources 196 (2011) 886-893.
    [13] K.F. Blurton, A.F. Sammells, J. Power Sources 4 (1979) 263-279.
    [14] Z.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Chem. Soc. Rev. 43 (2014) 7746-7786.
    [15] A.A. Gewirth, M.S. Thorum, Inorg. Chem. 49 (2010) 3557-3566.
    [16] Z. Solomon, N. COCHRAN, R.M. Mazgaj, J. Electrochem. Soc. 137 (1990) 1851-1857.
    [17] L. Jörissen, J. Power Sources 155 (2006) 23-32.
    [18] F.R. McLarnon, E.J. Cairns, J. Electrochem. Soc. 138 (1991) 645-656.
    [19] G.M. Veith, N.J. Dudney, J. Electrochem. Soc. 158 (2011) A658-A663.
    [20] S.S. Zhang, D. Foster, J. Read, J. Power Sources 195 (2010) 1235-1240.
    [21] J. Goldstein, A. Tseung, Nature 222 (1969) 869-870.
    [22] E. Yeager, J. Mol. Catal. 38 (1986) 5-25.
    [23] N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross, Fuel Cells 1 (2001) 105-116.
    [24] C.-L. Lee, Y.-L. Tsai, C.-H. Huang, K.-L. Huang, Electrochem. Commun. 29 (2013) 37-40.
    [25] H. Meng, P.K. Shen, Electrochem. Commun. 8 (2006) 588-594.
    [26] S. S̆trbac, R.R. Adžić, Electrochim. Acta 41 (1996) 2903-2908.
    [27] T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshima, J.-i. Ozaki, J. Phys. Chem. C 112 (2008) 14706-14709.
    [28] X.-Y. Xie, Z.-F. Ma, X.-X. Ma, Q. Ren, V.M. Schmidt, L. Huang, J. Electrochem. Soc. 154 (2007) B733-B738.
    [29] Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 134 (2012) 9082-9085.
    [30] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10 (2011) 780-786.
    [31] M. Lu, S. Kharkwal, H.Y. Ng, S.F.Y. Li, Biosens. Bioelectron. 26 (2011) 4728-4732.
    [32] J.-S. Lee, G.S. Park, H.I. Lee, S.T. Kim, R. Cao, M. Liu, J. Cho, Nano Lett. 11 (2011) 5362-5366.
    [33] www.sigracet.com
    [34] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B: Environ. 56 (2005) 9-35.
    [35] C.-J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, L. Wang, B. Fang, Z. Xu, Energy Environ. Sci. 1 (2008) 454-466.
    [36] S. Chen, P.J. Ferreira, W. Sheng, N. Yabuuchi, L.F. Allard, Y. Shao-Horn, J. Am. Chem. Soc. 130 (2008) 13818-13819.
    [37] Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruña, F.J. DiSalvo, J. Am. Chem. Soc. 136 (2014) 10206-10209.
    [38] X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y.M. Wang, X. Duan, T. Mueller, Y. Huang, Science 348 (2015) 1230-1234.
    [39] L. Cao, T. Mueller, J. Phys. Chem. C (2015).
    [40] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science 315 (2007) 493-497.
    [41] V. Petkov, B.N. Wanjala, R. Loukrakpam, J. Luo, L. Yang, C.-J. Zhong, S. Shastri, Nano Lett. 12 (2012) 4289-4299.
    [42] X. Tan, S. Prabhudev, A. Kohandehghan, D. Karpuzov, G.A. Botton, D. Mitlin, ACS Catal. 5 (2015) 1513-1524.
    [43] W. Hong, C. Shang, J. Wang, E. Wang, Nanoscale 7 (2015) 9985-9989.
    [44] M.K. Jeon, Y. Zhang, P.J. McGinn, Electrochim. Acta 55 (2010) 5318-5325.
    [45] Y. Ma, P.B. Balbuena, S.C. Ball, R. O’Malley, B.R.C. Theobald, E.L. Izzo, V.S. Murthi, L.V. Protsailo, J. Phys. Chem. C 117 (2013) 23224-23234.
    [46] Z. Guo, X. Dai, Y. Yang, Z. Zhang, X. Zhang, S. Mi, K. Xu, Y. Li, J. Mater. Chem. A 1 (2013) 13252-13260.
    [47] M. Li, Y. Lei, N. Sheng, T. Ohtsuka, J. Power Sources 294 (2015) 420-429.
    [48] D. Mei, Z.D. He, Y.L. Zheng, D.C. Jiang, Y.-X. Chen, Phys. Chem. Chem. Phys. 16 (2014) 13762-13773.
    [49] G. Fu, Z. Liu, Y. Chen, J. Lin, Y. Tang, T. Lu, Nano Research 7 (2014) 1205-1214.
    [50] R. Imran Jafri, N. Sujatha, N. Rajalakshmi, S. Ramaprabhu, Int. J. Hydrogen Energy 34 (2009) 6371-6376.
    [51] M. Shao, T. Yu, J.H. Odell, M. Jin, Y. Xia, Chem. Commun. 47 (2011) 6566-6568.
    [52] M. Shao, Palladium-Based Electrocatalysts for Oxygen Reduction Reaction, in: M. Shao (Ed.) Electrocatalysis in Fuel Cells, Springer London, 2013, pp. 513-531.
    [53] B. Li, J. Prakash, Electrochem. Commun. 11 (2009) 1162-1165.
    [54] H. Tang, B.L. Trout, J. Phys. Chem. B 109 (2005) 17630-17634.
    [55] M. Shao, K. Sasaki, N.S. Marinkovic, L. Zhang, R.R. Adzic, Electrochem. Commun. 9 (2007) 2848-2853.
    [56] F.W.T. Goh, Z. Liu, X. Ge, Y. Zong, G. Du, T.S.A. Hor, Electrochim. Acta 114 (2013) 598-604.
    [57] T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, J. Power Sources 195 (2010) 4350-4355.
    [58] A. Garsuch, A. Panchenko, C. Querner, A. Karpov, S. Huber, R. Oesten, Electrochem. Commun. 12 (2010) 1642-1645.
    [59] C.S. Johnson, D.W. Dees, M.F. Mansuetto, M.M. Thackeray, D.R. Vissers, D. Argyriou, C.K. Loong, L. Christensen, J. Power Sources 68 (1997) 570-577.
    [60] C.-C. Yang, S.-T. Hsu, W.-C. Chien, M. Chang Shih, S.-J. Chiu, K.-T. Lee, C. Li Wang, Int. J. Hydrogen Energy 31 (2006) 2076-2087.
    [61] F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Angew. Chem. Int. Ed. 52 (2013) 2474-2477.
    [62] S.H. Kim, S.M. Oh, J. Power Sources 72 (1998) 150-158.
    [63] V.K. Nartey, L. Binder, A. Huber, J. Power Sources 87 (2000) 205-211.
    [64] D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G.C. Dismukes, J. Am. Chem. Soc. 135 (2013) 3494-3501.
    [65] S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 112 (2008) 4406-4417.
    [66] M.M. Thackeray, Prog. Solid State Chem. 25 (1997) 1-71.
    [67] F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, Chem. Mater. 22 (2009) 898-905.
    [68] Y. Cao, H. Yang, X. Ai, L. Xiao, J. Electroanal. Chem. 557 (2003) 127-134.
    [69] J. Zhou, L. Yu, M. Sun, B. Lan, F. Ye, J. He, Q. Yu, Mater. Lett. 79 (2012) 288-291.
    [70] F.H.B. Lima, M.L. Calegaro, E.A. Ticianelli, Electrochim. Acta 52 (2007) 3732-3738.
    [71] S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.-K. Liu, S.-X. Dou, Electrochem. Commun. 10 (2008) 1724-1727.
    [72] L. Shen, Q. Che, H. Li, X. Zhang, Adv. Funct. Mater. 24 (2014) 2630-2637.
    [73] M. Prabu, P. Ramakrishnan, S. Shanmugam, Electrochem. Commun. 41 (2014) 59-63.
    [74] N.I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B: Environ. 163 (2015) 623-627.
    [75] G. Du, X. Liu, Y. Zong, T.S.A. Hor, A. Yu, Z. Liu, Nanoscale 5 (2013) 4657-4661.
    [76] B. Li, X. Ge, F.W.T. Goh, T.S.A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, Nanoscale 7 (2015) 1830-1838.
    [77] A. Kowalczyk, J. Baszynski, A. Szajek, A. Slebarski, T. Tolinski, J. Phys.: Condens. Matter 13 (2001) 5519.
    [78] X. Wang, P.J. Sebastian, M.A. Smit, H. Yang, S.A. Gamboa, J. Power Sources 124 (2003) 278-284.
    [79] R.N. Singh, B. Lal, Int. J. Hydrogen Energy 27 (2002) 45-55.
    [80] J.B. Goodenough, R. Manoharan, M. Paranthaman, J. Am. Chem. Soc. 112 (1990) 2076-2082.
    [81] H.Y. Playford, D.R. Modeshia, E.R. Barney, A.C. Hannon, C.S. Wright, J.M. Fisher, A. Amieiro-Fonseca, D. Thompsett, L.A. O’Dell, G.J. Rees, M.E. Smith, J.V. Hanna, R.I. Walton, Chem. Mater. 23 (2011) 5464-5473.
    [82] J. Yamaura, H. Ohsumi, K. Sugimoto, S. Tsutsui, Y. Yoda, S. Takeshita, A. Tokuda, S. Kitao, M. Kurokuzu, M. Seto, I. Yamauchi, K. Ohgushi, M. Takigawa, T. Arima, Z. Hiroi, J. Phys. Conf. Ser. 391 (2012) 012112.
    [83] X.-Y. Xie, Z.-F. Ma, X.-X. Ma, Q. Ren, V.M. Schmidt, L. Huang, J. Electrochem. Soc. 154 (2007) B733-B738.
    [84] N. Alonso-Vante, H. Tributsch, O. Solorza-Feria, Electrochim. Acta 40 (1995) 567-576.
    [85] Z. Chen, J.-Y. Choi, H. Wang, H. Li, Z. Chen, J. Power Sources 196 (2011) 3673-3677.
    [86] E. Yeager, Electrochim. Acta 29 (1984) 1527-1537.
    [87] Y. Wang, X. Ma, L. Lu, Y. He, X. Qi, Y. Deng, Int. J. Hydrogen Energy 38 (2013) 13611-13616.
    [88] L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Chem. Rev. 115 (2015) 4823-4892.
    [89] Y. Zheng, Y. Jiao, M. Jaroniec, Y. Jin, S.Z. Qiao, Small 8 (2012) 3550-3566.
    [90] L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 4 (2010) 1321-1326.
    [91] J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10 (2015) 444-452.
    [92] C.-C. Yang, S.-J. Lin, J. Power Sources 112 (2002) 174-183.
    [93] X.G. Zhang, J. Power Sources 163 (2006) 591-597.
    [94] M.N. Masri, A.A. Mohamad, J. Electrochem. Soc. 160 (2013) A715-A721.
    [95] H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Chem. Soc. Rev. 42 (2013) 9011-9034.
    [96] L.Ž. Vorkapić, D.M. Dražić, A.R. Despić, J. Electrochem. Soc. 121 (1974) 1385-1392.
    [97] T.C. Adler, F.R. McLarnon, E.J. Cairns, J. Electrochem. Soc. 140 (1993) 289-294.
    [98] S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim, S.-B. Cho, J. Power Sources 227 (2013) 177-184.
    [99] Y. Ein-Eli, M. Auinat, D. Starosvetsky, J. Power Sources 114 (2003) 330-337.
    [100] Y.-D. Cho, G.T.-K. Fey, J. Power Sources 184 (2008) 610-616.
    [101] S.J. Banik, R. Akolkar, J. Electrochem. Soc. 160 (2013) D519-D523.
    [102] C.W. Lee, K. Sathiyanarayanan, S.W. Eom, M.S. Yun, J. Power Sources 160 (2006) 1436-1441.
    [103] P. Sapkota, H. Kim, J. Indus. Eng. Chem. 16 (2010) 39-44.
    [104] Y. Ko, S.-M. Park, J. Phys. Chem. C 116 (2012) 7260-7268.
    [105] A.A. Mohamad, J. Power Sources 159 (2006) 752-757.
    [106] C.-C. Yang, S.-J. Lin, J. Power Sources 112 (2002) 497-503.
    [107] X. Zhu, H. Yang, Y. Cao, X. Ai, Electrochim. Acta 49 (2004) 2533-2539.
    [108] J.J. Xu, H. Ye, J. Huang, Electrochem. Commun. 7 (2005) 1309-1317.
    [109] T.J. Simons, A.A.J. Torriero, P.C. Howlett, D.R. MacFarlane, M. Forsyth, Electrochem. Commun. 18 (2012) 119-122.
    [110] Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, Z. Chen, Nano Lett. 12 (2012) 1946-1952.
    [111] K.-N. Jung, S.M. Hwang, M.-S. Park, K.J. Kim, J.-G. Kim, S.X. Dou, J.H. Kim, J.-W. Lee, Sci. Rep. 5 (2015) 7665.
    [112] G. Toussaint, P. Stevens, L. Akrour, R. Rouget, F. Fourgeot, ECS Trans. 28 (2010) 25-34.
    [113] Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 4 (2013) 1805.
    [114] S. Amendola, M. Binder, P.J. Black, S. Sharp-Goldman, L. Johnson, M. Kunz, M. Oster, T. Chciuk, R. Johnson, P. Black, WO2013090680-A2; WO2013090680-A3; CA2857758-A1; EP2792004-A2; MX2014006903-A1; US2015010833-A1; JP2015506079-W
    [115] G. Du, X. Liu, Y. Zong, T.A. Hor, A. Yu, Z. Liu, Nanoscale 5 (2013) 4657-4661.
    [116] M. Matsui, J. Ceram. Soc. Jpn. 109 (2001) 574-575.
    [117] T.C. Wen, C.C. Hu, J. Electrochem. Soc. 139 (1992) 2158-2163.
    [118] M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 14 (2002) 3946-3952.
    [119] X. Wang, Y. Li, J. Am. Chem. Soc. 124 (2002) 2880-2881.
    [120] M.O. Danilov, A.V. Melezhyk, J. Power Sources 163 (2006) 376-381.
    [121] R.B. Valim, M.C. Santos, M.R.V. Lanza, S.A.S. Machado, F.H.B. Lima, M.L. Calegaro, Electrochim. Acta 85 (2012) 423-431.
    [122] M.-Y. Cho, S.-M. Park, B.H. Choi, J.-W. Lee, K.C. Roh, J. Ceram. Process. Res. 13 (2012) s166-s169.
    [123] S. Devaraj, N. Munichandraiah, J. Solid State Electrochem. 12 (2008) 207-211.
    [124] R.K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, Phys. B 403 (2008) 1763-1769.
    [125] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373-380.
    [126] C.-C. Hu, C.-Y. Hung, K.-H. Chang, Y.-L. Yang, J. Power Sources 196 (2011) 847-850.
    [127] L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, J. Electrochem. Soc. 149 (2002) A504-A507.
    [128] B.D. McCloskey, R. Scheffler, A. Speidel, D.S. Bethune, R.M. Shelby, A. Luntz, J. Am. Chem. Soc. 133 (2011) 18038-18041.
    [129] J. Xiao, D. Wang, W. Xu, D. Wang, R.E. Williford, J. Liu, J.-G. Zhang, J. Electrochem. Soc. 157 (2010) A487-A492.
    [130] J. Liu, L. Jiang, Q. Tang, B. Zhang, D.S. Su, S. Wang, G. Sun, ChemSusChem 5 (2012) 2315-2318.
    [131] D. Shin, Y.-R. Kim, M. Choi, C.K. Rhee, J. Electrochem. Sci. Technol. 5 (2014) 82-86.
    [132] D. Szánto, S. Cleghorn, C. Ponce‐de‐León, F. Walsh, AIChE J. 54 (2008) 802-810.
    [133] M.S. El-Deab, T. Ohsaka, J. Electrochem. Soc. 153 (2006) A1365-A1371.
    [134] M. Calegaro, F. Lima, E. Ticianelli, J. Power Sources 158 (2006) 735-739.
    [135] L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, Electrochim. Acta 48 (2003) 1015-1021.
    [136] F. Garzon, I. Raistrick, E. Brosha, R. Houlton, B.W. Chung, Sensor. Actuat. B Chem. 50 (1998) 125-130.
    [137] H. Dietz, Solid State Ionics 6 (1982) 175-183.
    [138] J.-J. Han, N. Li, T.-Y. Zhang, J. Power Sources 193 (2009) 885-889.
    [139] P. Hernández-Fernández, S. Rojas, P. Ocón, A. de Frutos, J.M. Figueroa, P. Terreros, M.A. Peña, J.L.G. Fierro, J. Power Sources 177 (2008) 9-16.
    [140] T.-H. Yang, S. Venkatesan, C.-H. Lien, J.-L. Chang, J.-M. Zen, Electrochim. Acta 56 (2011) 6205-6210.
    [141] M. Lu, S. Kharkwal, H.Y. Ng, S.F.Y. Li, Biosensors and Bioelectronics 26 (2011) 4728-4732.
    [142] Y. Cao, H. Yang, X. Ai, L. Xiao, J. Electroanal. Chem. 557 (2003) 127-134.
    [143] F.H.B. Lima, M.L. Calegaro, E.A. Ticianelli, J. Electroanal. Chem. 590 (2006) 152-160.
    [144] J.E. Post, D.R. Veblen, Am. Mineral. 75 (1990) 477-489.
    [145] W. Xiao, D. Wang, X.W. Lou, J. Phys. Chem. C 114 (2009) 1694-1700.
    [146] X. Zhang, B. Li, C. Liu, Q. Chu, F. Liu, X. Wang, H. Chen, X. Liu, Mater. Res. Bull. 48 (2013) 2696-2701.
    [147] Z.Y. Yuan, T.Z. Ren, G.H. Du, B.L. Su, Appl. Phys. A 80 (2005) 743-747.
    [148] R. Giovanoli, Thermochim. Acta 234 (1994) 303-313.
    [149] J.P. Brenet, J. Power Sources 4 (1979) 183-190.
    [150] L. Zhang, Z.-Y. Zhang, R.-P. Liang, Y.-H. Li, J.-D. Qiu, Anal. Chem. 86 (2014) 4423-4430.
    [151] Y. Gorlin, B. Lassalle-Kaiser, J.D. Benck, S. Gul, S.M. Webb, V.K. Yachandra, J. Yano, T.F. Jaramillo, J. Am. Chem. Soc. 135 (2013) 8525-8534.
    [152] Q. Tang, L. Jiang, J. Liu, S. Wang, G. Sun, ACS Catal. 4 (2013) 457-463.
    [153] Z. Jin, H. Nie, Z. Yang, J. Zhang, Z. Liu, X. Xu, S. Huang, Nanoscale 4 (2012) 6455-6460.
    [154] W. Wei, Y. Tao, W. Lv, F.-Y. Su, L. Ke, J. Li, D.-W. Wang, B. Li, F. Kang, Q.-H. Yang, Sci. Rep. 4 (2014) 6289.
    [155] Y. Zhao, J. Liu, Y. Zhao, F. Wang, Phys. Chem. Chem. Phys. 16 (2014) 19298-19306.
    [156] Q. Wu, L. Jiang, L. Qi, E. Wang, G. Sun, Int. J. Hydrogen Energy 39 (2014) 3423-3432.
    [157] J.-S. Li, S.-L. Li, Y.-J. Tang, K. Li, L. Zhou, N. Kong, Y.-Q. Lan, J.-C. Bao, Z.-H. Dai, Sci. Rep. 4 (2014).
    [158] X. Wang, Z. Yang, Y. Zhang, L. Jing, Y. Zhao, Y. Yan, K. Sun, Fuel Cells 14 (2014) 35-41.
    [159] C.A. Hancock, A.L. Ong, P.R. Slater, J.R. Varcoe, J. Mater. Chem. A 2 (2014) 3047-3056.
    [160] W. Sun, A. Hsu, R. Chen, J. Power Sources 196 (2011) 627-635.
    [161] B. Gilbert, B.H. Frazer, A. Belz, P.G. Conrad, K.H. Nealson, D. Haskel, J.C. Lang, G. Srajer, G. De Stasio, J. Phys. Chem. A 107 (2003) 2839-2847.
    [162] K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, J. Chen, Chem. Soc. Rev. 44 (2015) 699-728.
    [163] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3 (2011) 546-550.
    [164] M. Voinov, Electrochim. Acta 27 (1982) 833-835.
    [165] S.B. Kanungo, K.M. Parida, B.R. Sant, Electrochim. Acta 26 (1981) 1147-1156.
    [166] P.-C. Li, C.-C. Hu, T.-C. Lee, W.-S. Chang, T.H. Wang, J. Power Sources 269 (2014) 88-97.
    [167] K.J. Kim, H.K. Kim, Y.R. Park, G.Y. Ahn, C.S. Kim, J.Y. Park, Hyperfine Interactions 169 (2006) 1363-1369.
    [168] D.U. Lee, H.W. Park, D. Higgins, L. Nazar, Z. Chen, J. Electrochem. Soc. 160 (2013) F910-F915.
    [169] Y. Sun, C. Li, G. Shi, J. Mater. Chem. 22 (2012) 12810-12816.
    [170] Y. Liu, S. Chen, X. Quan, H. Yu, H. Zhao, Y. Zhang, G. Chen, J. Phys. Chem. C 117 (2013) 14992-14998.
    [171] Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S.L. Suib, J. Am. Chem. Soc. 136 (2014) 11452-11464.
    [172] M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, J. Power Sources 142 (2005) 169-176.
    [173] F.J. Pérez-Alonso, M.A. Salam, T. Herranz, J.L. Gómez de la Fuente, S.A. Al-Thabaiti, S.N. Basahel, M.A. Peña, J.L.G. Fierro, S. Rojas, J. Power Sources 240 (2013) 494-502.
    [174] C. Luo, H. Xie, Q. Wang, G. Luo, C. Liu, Journal of Nanomaterials 2015 (2015) 10.
    [175] H.-J. Zhang, H. Li, C. Deng, G. Yang, J. Yang, ECS Electrochemistry Letters 4 (2015) H19-H23.
    [176] J. Liu, A. Shen, X. Wei, K. Zhou, W. Chen, F. Chen, J. Xu, S. Wang, L. Dai, ACS Applied Materials & Interfaces 7 (2015) 20507-20512.
    [177] H. Ma, B. Wang, RSC Advances 4 (2014) 46084-46092.
    [178] X. Tang, H. Li, Z. Du, W. Wang, H.Y. Ng, RSC Advances 5 (2015) 50968-50974.
    [179] H.-T. Fang, C.-G. Liu, C. Liu, F. Li, M. Liu, H.-M. Cheng, Chem. Mater. 16 (2004) 5744-5750.
    [180] J.M. Skowroński, P. Scharff, N. Pfänder, S. Cui, Adv. Mater. 15 (2003) 55-57.
    [181] K. Fujisawa, K. Komiyama, H. Muramatsu, D. Shimamoto, T. Tojo, Y.A. Kim, T. Hayashi, M. Endo, K. Oshida, M. Terrones, M.S. Dresselhaus, ACS Nano 5 (2011) 7547-7554.
    [182] C. Shen, A.H. Brozena, Y. Wang, Nanoscale 3 (2011) 503-518.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE