研究生: |
陳璽人 Chen, Xi-Ren |
---|---|
論文名稱: |
碳氣凝膠暨多壁奈米碳管對碳纖維補強高分子複合材料機械性質與環境效應特質之研究 Study on Mechanical Properties and Environmental Effects of Carbon Aerogel and Multi-Wall Carbon Nanotubes for Carbon Fiber Reinforced Polymer Composites |
指導教授: |
葉銘泉
Yip, Ming-Chuen |
口試委員: |
蔡宏營
葉維磬 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 碳氣凝膠 、奈米碳管 、團聚 、機械性質 、複合材料 |
外文關鍵詞: | Carbon aerogel, Carbon nanotube, Agglomeration, Mechanical properties, Composite |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳氣凝膠具有獨特的多孔奈米結構與高比表面積特性,對於增加高分子積層板的機械性質以及物理性質具有開發潛力。本研究使用不同含量的碳氣凝膠搭配固定含量的奈米碳管,在製程方面利用超音波震盪以及均質機攪拌來改善奈米碳材於複合材料之分散性。本研究旨在探討添加兩種奈米碳材的可行性。結果顯示碳氣凝膠對於環氧樹脂高分子複合材料的拉伸強度、衝擊強度、彎曲強度都隨著添加量增加而增加。在本研究中,旨在探討其於實際應用環境下的探討。結果顯示,碳氣凝膠於添加量為0.1wt%、0.2wt%有較佳的機械性質,當添加量增加時即會產生團聚現象。此外碳氣凝膠對於山區環境中具有良好的機械性質。實驗最後利用SEM觀測破壞斷面,藉此討論其介面情形和破壞機制。
Carbon aerogels have promising potential in increasing the mechanical and physical properties of carbon-fiber reinforced polymer (CFRP) laminates as a result of the possession of a unique property of porous structure at nanoscale and high specific surface. This study used a fixed amount of CNT (1 wt%) mixed with a different proportion of carbon aerogel by using homogenizer and ultrasonication in process to improve the dispersion of carbon materials.
The early stage of the study is aimed at investigating the possibility of adding two types of carbon materials in epoxy matrix. The experimental results indicate that the tensile properties, impact strength and flexural strength of epoxy matrix are proportional to the adding proportions. The later stage of the study is aimed at examining the changing conditions of carbon materials under a variety of environment effects. The experimental results specify that the overall mechanical properties are better when adding 0.1 wt% and 0.2wt% carbon aerogels, when increasing the amount will cause agglomeration. Furthermore, the overall mechanical properties of carbon aerogels are outstanding when in mountain regions.
Morphologies of the fracture surface of the specimen are observed by scanning electron microscope (SEM) to examine and discuss its interface condition and fracture mechanism.
[1] R. W. Pekala and F. M. Kong, "Resorcinol-formaldehyde aerogels and their carbonized derivatives," p. Medium: X; Size: Pages: 15, 1988
[2] http://images.sciencedaily.com/2008/02/080226112755-large.jpg
[3] T. F. Baumann, M. A. Worsley, T. Y.-J. Han and J. H. Satcher Jr, "High surface area carbon aerogel monoliths with hierarchical porosity," Journal of Non-Crystalline Solids, vol. 354, pp. 3513-3515, 2008
[4] C.-l. Qin, X. Lu, G.-p. Yin, X.-d. Bai and Z. Jin, "Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications," Transactions of Nonferrous Metals Society of China, vol. 19, Supplement 3, pp. s738-s742, 2009
[5] C. Qin, X. Lu, G. Yin, Z. Jin, Q. Tan and X. Bai, "Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors," Materials Chemistry and Physics, vol. 126, pp. 453-458, 2011
[6] Y. Zhu, H. Hu, W.-C. Li and X. Zhang, "Cresol–formaldehyde based carbon aerogel as electrode material for electrochemical capacitor," Journal of Power Sources, vol. 162, pp. 738-742, 2006
[7] A. K. Meena, G. K. Mishra, P. K. Rai, C. Rajagopal and P. N. Nagar, "Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent.," Journal of Hazardous Materials, vol. 122, pp. 161-170, 2005.
[8] http://www.gitam.edu/eresource/nano/nanotechnology/bottamup%20app_files/image002.gif
[9] http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/images/2010/6/2010623164547484.jpg
[10] J. Yang, S. Li, Y. Luo, L. Yan and F. Wang, "Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading," Carbon, vol. 49, pp. 1542-1549, 2011
[11] M. A. Worsley, "Enhanced thermal transport in carbon aerogel nanocomposites containing double-walled carbon nanotubes," Journal of Applied Physics, vol. 105, pp. 084316- 084316-4, 2009
[12] C.-C. Chou, "Mechanical effect of Carbon aerogel on Carbon fiber/epoxu Composite Laminates," Master thesis, National Tsing Hua University, Taiwan, 2010
[13] Q. F. Gao, J. Feng, C. R. Zhang, J. Z. Feng, W. Wu and Y. G. Jiang, "Mechanical Properties of Aerogel-Ceramic Fiber Composites," Advanced Materials Research, vol. 105 - 106, pp. 94-99, 2010
[14] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1911
[15] D. S. Bethune, C. H. Klang, M. S. d. Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature, vol. 363, pp. 605-607, 1993
[16] J. Kong, A. M. Cassell and H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, pp. 567-574, 1998
[17] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins and M. J. Heben, "Controlling single-wall nanotube diameters with variation in laser pulse power," Chemical Physics Letters, vol. 316, pp. 13-18, 2000
[18] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, "Direct growth of aligned open carbon nanotubes by chemical vapor deposition," Chemical Physics Letters, vol. 299, pp. 97-102, 1999
[19] J. Jiao and S. Seraphin, "Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods," Journal of Physics and Chemistry of Solids, vol. 61, pp. 1055-1067, 2000
[20] F. An, C. Lu, Y. Li, J. Guo, X. Lu, H. Lu, S. He and Y. Yang, "Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite," Materials & Design, vol. 33, pp. 197-202, 2012
[21] H.-S. Su, "The Effect of CNT on Mechanical and Physical Properties of C/C Composites," Master thesis, National Tsing Hua University, Taiwan, 2010
[22] J.-H. Lee, N.-R. Kim, B.-J. Kim and Y.-C. Joo, "Improved mechanical performance of solution-processed MWCNT/Ag nanoparticle composite films with oxygen-pressure-controlled annealing," Carbon, vol. 50, pp. 98-106, 2012
[23] D. Alhazov and E. Zussman, "Study of the energy absorption capabilities of laminated glass using carbon nanotubes," Composites Science and Technology, vol. 72, pp. 681-687, 2012
[24] X. Chen, J. Wang, M. Lin, W. Zhong, T. Feng, X. Chen, J. Chen and F. Xue, "Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes," Materials Science and Engineering: A, vol. 492, pp. 236-242, 2008
[25] M. T. Kim, K. Y. Rhee, J. H. Lee, D. Hui and A. K. T. Lau, "Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes," Composites Part B: Engineering, vol. 42, pp. 1257-1261, 2011
[26] M. Zu, Q. Li, Y. Zhu, M. Dey, G. Wang, W. Lu, J. M. Deitzel, J. W. Gillespie Jr, J.-H. Byun and T.-W. Chou, "The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test," Carbon, vol. 50, pp. 1271-1279, 2012
[27] http://www.csiro.au/~/Media/CSIROau/Images/Materials/CNTspinning_TFT_ind/Main.ashx
[28] 許明發, 柯澤豪, 劉顯光, and 郭文雄, 複合材料入門: 中華民國尖端材料科技協會, 2005
[29] D. F. Devitt, R. A. Schapery and W. L. Bradley, "A Method for Determining the Mode I Delamination Fracture Toughness of Elastic and Viscoelastic Composite Materials," Journal of Composite Materials, vol. 14, pp. 270-270,1980
[30] August Wöhler,” Wöhler's experiments on the strength of metals,” Engineering,New, vol. 4, pp. 160-161, 1867
[31] R. Talreja,”Fatigue of Composite Materials ,”Chap.1,Technometric Publishing Company,Inc,1987
[32] M.J. Salkind,”Mechanics in Application of Composite Materials,”Chap.3,Acamic Press,New York,1972
[33] L. J. Lee, J. N. Yang and D. Y. Sheu, "Prediction of fatigue life for matrix-dominated composite laminates," Composites Science and Technology, vol. 46, pp. 21-28, 1993
[34] M. C. Lafarie-Frenot and C. Hénaff-Gardin, "Formation and growth of 90° ply fatigue cracks in carbon/epoxy laminates," Composites Science and Technology, vol. 40, pp. 307-324, 1991
[35] M. H. R. Jen, Y. S. Kau and I. C. Wu, "Fatigue damage in a centrally notched composite laminate due to two-step spectrum loading," International Journal of Fatigue, vol. 16, pp. 193-201, 1994
[36] R. Talreja,”Fatigue of Composite Materials ,”Chap.6,Technometric Publishing Company,Inc,1987
[37] W. Hwang and K. S. Han, "Fatigue of Composites—Fatigue Modulus Concept and Life Prediction," Journal of Composite Materials, vol. 20, pp. 154- 165, 1986
[38] Y. Miyano, M. Nakada and M. K. McMurray, "Influence of Stress Ratio on Fatigue Behavior in the Transverse Direction of Unidirectional CFRPS," Journal of Composite Materials, vol. 29, pp. 1808-1822, 1995
[39] “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” ASTM D790-10, 2010
[40] “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM D2344/D2344M-00, 2006
[41] “Standard Test Method for Tensile Properties of Plastics,” ASTM D638-10, 2010
[42] “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039-08, 2008.
[43] “Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics,” ASTM D256-10, 2010
[44] “Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures,” ASTM D4065-06, 2006.
[45] “Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Three-Point Bending),” ASTM D5023-07, 2007
[46] “Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,” ASTM E831-00, 2000
[47] “Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials,” ASTM D5470-12, 2012