研究生: |
曾憶婷 Yi-Ting Tseng |
---|---|
論文名稱: |
高熵合金Co1.5CrFeNi1.5Ti0.5Mox之電化學量測及其特性之研究 Electrochemical Monitoring and Properties of the High Entropy Alloy Co1.5CrFeNi1.5Ti0.5Mox in Aqueous Environments |
指導教授: |
施漢章
Han C. Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 高熵合金 、304 不□鋼 、陽極極化 、循環極化 、電化學阻抗頻譜 、腐蝕 、孔蝕 |
外文關鍵詞: | high entropy alloy, 304 stainless steel, anodic polarization, cyclic polarization, EIS, corrosion, pitting corrosion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討新開發之高熵合金的腐蝕行為及其電化學特性之研究,此系列合金非常特殊,高熵合金Co1.5CrFeNi1.5Ti0.5為FCC相,但其硬度比一般的FCC型合金高,為了進一步測試其實用性,因此做了一些材料腐蝕性質方面的研究;然而,Mo元素的添加有助於抗氯鹽之孔蝕,因此添加Mo元素於高熵合金內,改變Mo成份之莫耳比進行探討,並嘗試做加工和表面氧化的變化,並與商用304不□鋼做比較。
實驗分別於0.5 M硫酸與1 M氯化鈉溶液中進行,結果顯示:無論於室溫、高溫、高氯離子濃度環境下,Co1.5CrFeNi1.5Ti0.5Mox的抗孔蝕能力遠高於304不□鋼,當高熵合金還未到達孔蝕電位,304不□鋼的電流密度已經高於高熵合金104倍,而從循環極化以及SEM的結果,亦可明顯看出此高熵合金具有極佳的抗孔蝕能力。
於硫酸溶液中,此高熵合金極化曲線的結果顯示其抗蝕能力與304不□鋼相當,但是觀察腐蝕後的表面形貌,高熵合金腐蝕破壞的情形較為嚴重,可能為鑄造後形成之樹枝晶與樹枝間相所造成。添加Mo元素則可有效提升合金的抗蝕能力,但是隨者Mo含量增加至0.8份時,由於第二相的生成,反而使抗蝕能力下降;另外,將高熵合金浸泡於硫酸溶液中30天後,亦發現Co1.5CrFeNi1.5Ti0.5有明顯的樹枝晶結構,Co1.5CrFeNi1.5Ti0.5Mo0.1卻無明顯的樹枝晶結構。
測試均質化加工後之試片得知:對硫酸之抗蝕性有顯著的改善,因此可藉由其他方式之加工來改善其抗蝕性。表面氧化之試片,目的為觀察於表面生成一層薄的自生氧化物之後,是否有達到保護內部合金的效果,而本實驗利用於900 ℃下持溫4小時之製程參數生成的氧化物太厚;因為熱膨脹係數的差異,導致熱應力存在而容易剝落,應考慮縮短氧化時間,生成一層薄且附著力佳的氧化膜。
High entropy alloys (HEAs) are a newly developed family of multi-component alloys composed of at least five major elements, such as chromium, iron, nickel, aluminum, cobalt, titanium, copper, as well as molybdenum, etc. HEAs Co1.5CrFeNi1.5Ti0.5 has an FCC structure, a higher hardness than other FCC, good resistances to oxidation, and atmospheric corrosion. The potential applications of the HEAs are very significant. On the other hand, the addition of Mo, such as 304ss and 316ss, may have good pitting corrosion resistance.
To further understand the electrochemical properties of the HEAs, the HEAs Co1.5CrFeNi1.5Ti0.5Mox was conducted in 0.5 M H2SO4 and 0.1 M NaCl solution. The result of this study shows that the HEAs Co1.5CrFeNi1.5Ti0.5Mox have much higher pitting corrosion resistances (~1.2 V) than 304ss (~0.18 V) in the Cl- containing environments, as indicated by the significant differences in passive range as well as in pitting potential. The anodic polarization curves determined for Co1.5CrFeNi1.5Ti0.5Mox and for 304ss are very similar to each other in the chloride-free 0.5M H2SO4. However, the SEM images show that the surface morphology of the HEAs has been seriously damaged due to their cast-structure. The corrosion phenomenon will be discussed via electrochemical impedance spectroscopy together with the SEM observations.
The HEAs which was set in 1100 ℃ for 6 hours, then quenched by water is called homogenization. This kind of HEAs has good corrosion resistance in sulfuric acid solution. The oxidation film of HEAs was too thick. It was under the 900℃environment which was filled with oxygen for 4 hours treatment. The improvement way is to shorten the oxidation time or transform the atmosphere. In order to form an good adhesion and thin film.
1. Y. Y. Chen, U. T. Hong, J. W. Yeh, and H. C. Shih, “Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288°C high-purity water”, Appl. Phys. Lett. 87 (2005) 261918-261920
2. Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel”, Corros. Sci. 47 (2005) 2679-2699
3. Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corros. Sci. 47 (2005) 2257-2279
4. Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution”, Mater. Chem. and Phys. 92 (2005) 112-117
5. 張瑋倫, 杜宗附, 開物, “鐵鈷鎳基等莫耳合金之高溫硫化行為研究”, 防蝕工程 第十九卷 第一期 91-109, 2005.
6. 陳彥羽, 洪育德, 葉均蔚, 施漢章, “高亂度合金的金相與電化學極化之研究 – 在室溫下與其他鋼材做比較”, 防蝕工程 第十八卷第一期 25 – 40, 2004.
7. 林家旭,”Fe2AlCoCrNiMo0.5高熵合金在室溫下之電化學性質”, 國立清華大學材料工程研究所碩士論文,2005
8. 吳家豪,”AlxFeCoNiCrMo0.5高熵合金之腐蝕及電化學性質”,國立清華大學材料工程研究所碩士論文,2006
9. 張競謙,”AlxCrMnFe1.5Niy高熵合金之腐蝕及電化學性質行為研究”,國立清華大學材料工程研究所碩士論文,2006
10. Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Jon-Yiew Gan, Tsung-Shune Chin, Tao-Tsung Shun, Chun-Huei Tsau, and Shou-Yi Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Meterials, 6 (2004) 299-303
11. J. Kramer, “Der amorphe Zustand der Metalle”, Z. Phys., 106 (1937) 675-691
12. J. Kramer, “Noconducting modification of metals”, J. Annln. Phys., 19 (1934) 37-64
13. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn Bur. Stand., 44 (1950) 109
14. P. Duwez, R. H. Willens, and W. Klement, “Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys”, J. Appl. Phys., 31 (1960) 1136-1137
15. P. Duwez and R. H. Willens, “Rapid Quenching of Liquid Alloys”, Trans. Met. Soc. AIME, 227 (1963) 362-365
16. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, “New Amorphous-Alloys with Good Ductility in Al-Ce-NB, Al-Ce-Fe, Al-Ce-Co, Al-Ce-Ni, Al-Ce-Cu Systems”, Japanese Journal of Applied Physics Part 2-Letters, 27 (1998) 1796-1799
17. A. Inoue, K. Kita, T. Masumoto and T. Zhang, “An Amorphous La-55-Al-25-Ni-20 Alloy Prepared by Water Quenching ,“ Mater. Trans. JIM, 30 (1989) 722-725
18. A. Inoue-A, T. Zhang and T. Masumoto, “Zr-Al-Ni Amorphous-Alloys with High Glass-Transition Temperature and Significant Supercooled Liquid Region”, Mater. Trans. JIM, 31(1990) 177-183
19. A. Inoue and T. Masumoto, U.S. parent No. 5032196, Japanese Patent 07-122120
20. A. Peker and W. L. Johnson, “A Highly Processable Metallic-Glass-Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys. Lett., 63 (1993) 2342-2344
21. A. Inoue, T. Zhang, K. Ohba and T. Shibata, “Continuous-Cooling-Transformation (CCT) Curves for Zr-Al-Ni-Cu Supercooled Liquids to Amorphous or Crystalline Phase”, Mater. Trans. JIM, 36 (1995) 876-878
22. T. Zhang and A. Inoue, ”Thermal and Mechanical-Properties of Ti-Ni-Cu-Sn Amorphous-Alloys with a Wide Supercooled Liquid Region Before Crystallization”, Mater. Trans. JIM, 39 (1998) 1001-1006
23. X. Wang, I. Yoshii, A. Inoue, Y. H. Kim, and I. B. Kim, “Bulk amorphous Ni75-xNb5MxP20-yBy(M=Cr, Mo) alloys with large supercooling and high strength”, Mater. Trans. JIM, 40 (1999) 1130-1136
24. 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996
25. 賴高廷,“高亂度合金微結構及性質探討” ,國立清華大學材料科學工程研究所碩士論文, 1998
26. 許雲翔, “以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究” ,國立清華大學材料科學工程研究所碩士論文, 2000
27. 洪育德, “Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討”, 國立清華大學材料科學工程研究所碩士論文,2001
28. J. R. Scully, ” Polarization resistance method for determination of instantaneous corrosion rates”, Corros., 56 (2000) 199-204
29. W. Stephen Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, p.48
30. Denny A. Jones, ”Principles and Prevention of Corrosion” (Prentice-Hall International, UK, 1996)
31. Herbert H. Uhlig and R. Winston Revie, “Corrosion and Corrosion Control” (A Wiley Interscience Publication, USA, 1984)
32. J. Kruger and K. Phyne, Nucl. Chem. Waste Manage, 3 (1982) 205
33. Z. Szklarska-Smialowska, “Pitting Corrosion of Metal” (NACE, Huston, Texas, 1986)
34. A. J. Sedriks, Inter. Met. Reviews, 28 (1983) 295
35. 蔡哲瑋、蔡宇翔、陳瑞凱、葉均蔚,”多元高性能合金強化特性研究”,工研院工業材料研究所計畫成果報告,2005年11月,p.17.
36. 黃振賢,”機械材料”,新文京開發出版,2000
37. William D. Callister, Jr. ”Materials Science And Engineering An Introduction” (Wiley, Fifth Edition, 1999)
38. 王彥淳, “AlxCo1.5CrFeMoyNi1.5Ti0.5 (x, y =0, 0.1, 0.2) 高熵合金機械性質與微結構之研究”, 國立清華大學材料科學工程研究所碩士論文,2007
39. A. A. Mazhar, S. T. Arab, and E. A. Noor, ”The role of chloride ions and pH in the corrosion and pitting of Al-Si alloys”, J. Appl. Electrochem., 31 (2001) 1131-1140
40. M. A. Quraishi, Danish Jamal, “Dianils as new and effective corrosion inhibitors for mild steel in acidic solutions”, Mater. Chem. and Phys., 78 (2003) 608–613
41. Gamal K. Gomma, “Corrosion of low-carbon steel in sulphuric acid solution in presence of pyrazole-halides mixture”, Mater. Chem. and Phys., 55 (1998) 241-246
42. E.J. Kelly, “Anodic dissolution and passivation of titanium in acidic media”, J. Electrochem. Soc., 126 (1979) 2064-2075
43. M. H. Guo, Q. M. Wang, J. Gong, C. Sun, R. F. Huang, L. S. Wen, “Oxidation and hot corrosion behavior of gradient NiCoCrAlYSiB coatings deposited by a combination of arc ion plating and magnetron sputtering techniques”, Corros. Sci., 48 (2006) 2750-2764
44. H. L. Du, A. Aljarany, P. K. Datta, J. S. Burnell-Gray, “Oxidation behaviour of Ti–46.7Al–1.9W–0.5Si in air and Ar–20%O2 between 750 and 950℃”, Corros. Sci., 47 (2005) 1706-1723
45. P. R. Wilson, Z. Chen, “The effect of manganese and chromium on surface oxidation products formed during batch annealing of low carbon steel strip”, Corros. Sci., 49 ( 2007) 1305-1320
46. J. H. Xiang, Y. Niu, F. Gesmundo, “The oxidation of two ternary Fe–Cu–10 at.% Al alloys in 1atm of pure O2 at 800–900℃”, Corros. Sci., 47 (2005) 1493-1505
47. J. H. Xiang, Y. Niu, F. Gesmundo, ” Oxidation of Two Ternary Fe–Cu–5 at.% Al Alloys in 1 atm of Pure O2 at 800°C”, Oxid. Met., 61 (2004) 403-421
48. F. Gesmundo, F. Viani, Y. Niu, “High-temperature oxidation behavior of pure Ni3Al”, Oxid. Met., 45 (1996) 51-72
49. F. Gesmundo, F. Viani, Y. Niu, “The internal oxidation of two-phase binary alloys beneath an external scale of the less-stable oxide”, Oxid. Met., 47 (1997) 355-380