簡易檢索 / 詳目顯示

研究生: 趙洛芸
Chao, Lo Yun
論文名稱: 阿拉伯芥三號澱粉合成酶澱粉吸附區之功能性及結構分析
Functional and Structural Characterization of Starch Binding Domain in Arabidopsis thaliana Starch Synthase III
指導教授: 張大慈
Chang, Margaret Dah Tsyr
口試委員: 孫玉珠
Sun, Yuh Ju
林彩雲
Lin, Tsai Yun
蘇士哲
Sue, Shih Che
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 100
中文關鍵詞: 阿拉伯芥澱粉合成酶澱粉吸附區合成酵素
外文關鍵詞: Arabidopsis thaliana, starch synthase, starch binding domain, synthase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 澱粉是植物體中主要的能量儲存形式,澱粉合成過程包含三個酵素:腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、澱粉合成酶(SS)及澱粉分支酶(SBE),醣類結合模組(CBMs)為能辨認及與醣類專一性結合的蛋白質片段,主要存在於澱粉相關酵素;阿拉伯芥三號澱粉合成酶(AtSSIII)是澱粉合成過程所需的一種酵素,在暫時性澱粉合成中扮演很重要的角色。AtSSIII結構上在N端有一段可能的導引胜肽序列,序列後接著三個澱粉吸附區(SBD),C端則為催化區(catalytic domain),阿拉伯芥的澱粉吸附區是第一個在合成酵素中發現的澱粉吸附區,在CAZy資料庫中被分在醣類結合模組中第53個家族,目前研究發現阿拉伯芥三號澱粉合成酶中的三個澱粉吸附區會以串聯形式存在,且其中第二個區域(D2)對其與澱粉的親和性影響最大

    因醣類結合模組第53個家族的特性目前了解有限,其結構也尚未被解出,因此本研究希望表現重組蛋白AtSSIIID2後進行功能及結構上的進一步探討。在成功利用大腸桿菌(E. coli)之表現系統表現重組蛋白AtSSIIID2後,利用鎳離子親合層析法(Ni2+-affinity chromatography)純化出此重組蛋白,純化得的蛋白首先利用超高速離心法和液相層析質譜儀分析,發現AtSSIIID2在自然情況下多以單體形式存在,除此之外,實驗發現AtSSIIID2對澱粉的結合親和力在不同pH值的環境中會有所不同,在pH 5的環境中對澱粉親和力最高,而AtSSIIID2與澱粉結合達飽和需七小時以上;另外,利用恆溫滴定熱量計(ITC)測量AtSSIIID2與不同可溶性醣類的結合力,發現AtSSIIID2與短鏈醣的結合力高於長鏈醣,這些實驗結果讓我們對SBD在澱粉合成過程中扮演的角色有更深入了解。

    由於醣類結合模組第53個家族的結構仍未知,因此試圖解結構外我們也用軟體進行序列分析及結構預測。序列分析比對後發現AtSSIIID2 和醣類結合模組中其他家族的SBD胺基酸序列相似度極低,但與醣類結合模組中第53個家族的其他成員胺基酸序列相似度很高;結構部分利用Phyre2、SWISS-MODEL及(PS)2三個網路平台作結構預測,其中Phyre2和SWISS-MODEL預測出的結構含8個β-strands,和目前已解出的其他SBD結構組成相同;圓偏光二色光譜(Circular dichroism)分析結果更證明AtSSIIID2結構中含β-strands;AtSSIIID2是第一個在合成酵素發現的SBD,對AtSSIIID2結構的了解或許對其調控有幫助。


    中文摘要 I Abstract II Acknowledgement III List of Figures VII List of Tables IX List of Appendices X Abbreviation XI Chapter 1 Introduction 1 1.1 Starch 1 1.2 Carbohydrate binding modules (CBMs) 3 1.3 Starch synthase III from Arabidopsis thaliana (AtSSIII) 8 1.4 Motivation 15 Chapter 2 Materials and Methods 16 2.1 Microbial strains, media and plsmids 16 2.2 Construction of plasmid 16 2.3 Competent cell preparation 17 2.4 Transformation 17 2.5 Small scale expression of AtSSIIID2 in E. coli 17 2.6 Large scale expression of AtSSIIID2 in E. coli 18 2.7 Sodium dodecyl sulphate-polyacrilamide gel electrophoresis (SDS-PAGE) 18 2.8 Western blotting 19 2.9 Purification of AtSSIIID2 by Ni2+-affinity column chromatography 19 2.10 Buffer exchange of AtSSIIID2 20 2.11 Bicinchoninic acid (BCA) assay 20 2.12 Analytical ultracentrifugation 20 2.13 Mass spectrometry determination 21 2.14 Native PAGE 21 2.15 Effect of pH on AtSSIIID2 binding activity 21 2.16 Isothermal titration calorimetry (ITC) 22 2.17 Circular dichroism (CD) 22 2.18 Protein homology/analogy recognition engine version 2.0 (Phyre2) 22 2.19 Feature-incorporated alignment (FIA)-based homology modeling 23 2.20 SWISS-MODEL 23 2.21 Protein structure prediction server ((PS)2) 24 2.22 Protein crystallization screening 24 2.23 Nuclear magnetic resonance (NMR) heteronuclear single quantum coherence (HSQC) analysis 25 2.24 Sequence analysis tool 25 Chapter 3 Results 27 3.1 Construction and small scale expression of recombinant AtSSIIID2 27 3.2 Purification of recombinant AtSSIIID2 by Ni2+-affinity column chromatography 28 3.3 Characterization of AtSSIIID2 28 3.4 pH effect on the adsorption of AtSSIIID2 to corn starch 29 3.5 Saturation binding assay 29 3.6 Quantitative measurement of binding affinity between AtSSIIID2 and soluble glycans 30 3.7 In silico analysis of AtSSIIID2 31 3.8 Secondary structure of AtSSIIID2 32 3.9 Screening for AtSSIIID2 crystallization conditions 33 3.10 Nuclear Magnetic Resonance (NMR) 33 Chapter 4 Discussion 35 4.1 Characterization of AtSSIIID2 35 4.2 Thermodynamic parameters between AtSSIIID2 and soluble glycans 37 4.3 Structure of AtSSIIID2 38 4.4 Conclusion 42 References 44 Figures 52 Tables 82 Appendices 92

    1. Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J: From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 1996, 86(3):349-352.

    2. Martin C, Smith AM: Starch biosynthesis. The Plant Cell 1995, 7(7):971-985.

    3. Buchholz K, Seibel J: Industrial carbohydrate biotransformations. Carbohydrate Research 2008, 343(12):1966-1979.

    4. Zhang X, Myers AM, James MG: Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiology 2005, 138(2):663-674.

    5. Pandey MK, Rani NS, Madhav MS, Sundaram RM, Varaprasad GS, Sivaranjani AKP, Bohra A, Kumar GR, Kumar A: Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnology Advances 2012, 30(6):1697-1706.

    6. Sorimachi K, Jacks AJ, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP: Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. Journal of Molecular Biology 1996, 259(5):970-987.

    7. Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammerts van Bueren A, Law V: A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. The Journal of Biological Chemistry 2006, 281(1):587-598.

    8. Mikami B, Iwamoto H, Malle D, Yoon HJ, Demirkan-Sarikaya E, Mezaki Y, Katsuya Y: Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. Journal of Molecular Biology 2006, 359(3):690-707.

    9. Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde R, Parisi G: Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins 2006, 65(1):27-31.

    10. Guillen D, Sanchez S, Rodriguez-Sanoja R: Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology 2010, 85(5):1241-1249.

    11. Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M: Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. European Journal of Biochemistry / FEBS 1988, 170(3):575-581.

    12. Gilkes NR, Warren RA, Miller RC, Jr., Kilburn DG: Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. The Journal of Biological Chemistry 1988, 263(21):10401-10407.

    13. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. The Biochemical Journal 2004, 382(Pt 3):769-781.

    14. Christiansen C, Hachem MA, Glaring MA, Vikso-Nielsen A, Sigurskjold BW, Svensson B, Blennow A: A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Letters 2009, 583(7):1159-1163.

    15. Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MD: The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. The Biochemical Journal 2006, 396(3):469-477.

    16. Abe A, Tonozuka T, Sakano Y, Kamitori S: Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. Journal of Molecular Biology 2004, 335(3):811-822.

    17. Iwamoto H, Ohno M, Ohmori M, Hirose J, Tanaka A, Sakai S, Hiromi K: Comparison of the binding of beta-cyclodextrin and alpha- and gamma-cyclodextrins with pullulanase from Klebsiella pneumoniae as studied by equilibrium and kinetic fluorometry. Journal of Biochemistry 1994, 116(6):1264-1268.

    18. Glaring MA, Baumann MJ, Abou Hachem M, Nakai H, Nakai N, Santelia D, Sigurskjold BW, Zeeman SC, Blennow A, Svensson B: Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and alpha-amylase involved in plastidial starch metabolism. The FEBS Journal 2011, 278(7):1175-1185.

    19. Okazaki N, Tamada T, Feese MD, Kato M, Miura Y, Komeda T, Kobayashi K, Kondo K, Blaber M, Kuroki R: Substrate recognition mechanism of a glycosyltrehalose trehalohydrolase from Sulfolobus solfataricus KM1. Protein Science : A Publication of the Protein Society 2012, 21(4):539-552.

    20. Valdez HA, Busi MV, Wayllace NZ, Parisi G, Ugalde RA, Gomez-Casati DF: Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 2008, 47(9):3026-3032.

    21. Koropatkin NM, Smith TJ: SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 2010, 18(2):200-215.

    22. Peng H, Zheng Y, Chen M, Wang Y, Xiao Y, Gao Y: A starch-binding domain identified in alpha-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Letters 2014, 588(7):1161-1167.

    23. Mikkelsen R, Mutenda KE, Mant A, Schurmann P, Blennow A: Alpha-glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(5):1785-1790.

    24. Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B: The carbohydrate-binding module family 20--diversity, structure, and function. The FEBS Journal 2009, 276(18):5006-5029.

    25. Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP: Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 1997, 5(5):647-661.

    26. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ: Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. The Biochemical Journal 2008, 416(1):27-36.

    27. van Bueren AL, Boraston AB: The structural basis of alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. Journal of Molecular Biology 2007, 365(3):555-560.

    28. Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF: The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. The FEBS Journal 2010, 277(2):428-440.

    29. Gibon Y, Pyl ET, Sulpice R, Lunn JE, Hohne M, Gunther M, Stitt M: Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant, Cell & Environment 2009, 32(7):859-874.

    30. Li Z, Sun F, Xu S, Chu X, Mukai Y, Yamamoto M, Ali S, Rampling L, Kosar-Hashemi B, Rahman S et al: The structural organisation of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants. Functional & Integrative Genomics 2003, 3(1-2):76-85.

    31. Ball SG, Morell MK: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology 2003, 54(1):207-233.

    32. Myers AM, Morell MK, James MG, Ball SG: Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology 2000, 122(4):989-997.

    33. Delvalle D, Dumez S, Wattebled F, Roldan I, Planchot V, Berbezy P, Colonna P, Vyas D, Chatterjee M, Ball S et al: Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. The Plant Journal : for Cell and Molecular Biology 2005, 43(3):398-412.

    34. Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldan I, Montero M, Munoz FJ, Ovecka M, Bahaji A, Planchot V et al: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. The Plant Cell 2009, 21(8):2443-2457.

    35. Roldan I, Wattebled F, Mercedes Lucas M, Delvalle D, Planchot V, Jimenez S, Perez R, Ball S, D'Hulst C, Merida A: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. The Plant Journal : for Cell and Molecular Biology 2007, 49(3):492-504.

    36. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 2009, 37(6):D233-238.

    37. Chou WY, Chou WI, Pai TW, Lin SC, Jiang TY, Tang CY, Chang MD: Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics 2010, 26(8):1022-1028.

    38. Hugo A. Valdez1 DAP, 2, Nahuel Z. Wayllace1,2, Mauricio J. Grisolı´a2,, Diego F. Gomez-Casati1 aMVB, 2: Preferential binding of SBD from Arabidopsis thaliana SSIII to polysaccharides: Study of amino acid residues involved. Starch/Sta¨ rke 2011, 63(2):10.

    39. Weiner H, Stitt M, Heldt HW: Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1987, 893(1):13-21.

    40. Li Z, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale KR, Appels R, Morell MK: The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiology 2000, 123(2):613-624.

    41. Senoura T, Asao A, Takashima Y, Isono N, Hamada S, Ito H, Matsui H: Enzymatic characterization of starch synthase III from kidney bean (Phaseolus vulgaris L.). The FEBS Journal 2007, 274(17):4550-4560.

    42. Kelley LA, Sternberg MJ: Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 2009, 4(3):363-371.

    43. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research 2003, 31(13):3381-3385.

    44. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L et al: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 2014, 42(3):W252-258.

    45. Chen CC, Hwang JK, Yang JM: (PS)2-v2: template-based protein structure prediction server. BMC Bioinformatics 2009, 10(4):366.

    46. Howe JC, Rumpler WV, Behall KM: Dietary starch composition and level of energy intake alter nutrient oxidation in "carbohydrate-sensitive" men. The Journal of Nutrition 1996, 126(9):2120-2129.

    47. Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley CL, Smith AM: Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. The Plant Cell 1998, 10(3):413-426.

    48. Gomez-Casati DF, Martin M, Busi MV: Polysaccharide-synthesizing glycosyltransferases and carbohydrate binding modules: the case of starch synthase III. Protein and Peptide Letters 2013, 20(8):856-863.

    49. Weber K, Osborn M: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. The Journal of Biological Chemistry 1969, 244(16):4406-4412.

    50. Niepmann M, Zheng J: Discontinuous native protein gel electrophoresis. Electrophoresis 2006, 27(20):3949-3951.

    51. Lin SC, Lin IP, Chou WI, Hsieh CA, Liu SH, Huang RY, Sheu CC, Chang MD: CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein Expression and Purification 2009, 65(2):261-266.

    52. Senoura T, Isono N, Yoshikawa M, Asao A, Hamada S, Watanabe K, Ito H, Matsui H: Characterization of starch synthase I and II expressed in early developing seeds of kidney bean (Phaseolus vulgaris L.). Bioscience, Biotechnology, and Biochemistry 2004, 68(9):1949-1960.

    53. Busi MV, Palopoli N, Valdez HA, Fornasari MS, Wayllace NZ, Gomez-Casati DF, Parisi G, Ugalde RA: Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Proteins 2008, 70(1):31-40.

    54. Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC: Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. The Biochemical Journal 2007, 403(1):21-30.

    55. Polekhina G, Gupta A, van Denderen BJ, Feil SC, Kemp BE, Stapleton D, Parker MW: Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 2005, 13(10):1453-1462.

    56. Schwimmer S, Balls AK: Isolation and properties of crystalline alpha-amylase from germinated barley. The Journal of Biological Chemistry 1949, 179(3):1063-1074.

    57. Commuri PD, Keeling PL: Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. The Plant Journal : for Cell and Molecular Biology 2001, 25(5):475-486.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE