簡易檢索 / 詳目顯示

研究生: 吳亭穎
Wu, Ting-Ying
論文名稱: Structural Evolution during the Cold Crystallization of Isotactic Polypropylene
指導教授: 蘇安仲
Su, An-Chung
口試委員: 陳信龍
鄭有舜
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 23
中文關鍵詞: 等规聚丙烯小角度散射
外文關鍵詞: iPP, SAXS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cold crystallization process of isotactic polypropylene (iPP) was examined via a combination of small/wide-angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The approach adopts model-fitting with the ellipsoid form factor and a distorted-FCC structure factor supplemented with the Kratky-Porod method in the analysis of SAXS data. Our WAXS results indicate that the as-quenched (from melt to −10 ºC) “mesomorphic” iPP shows two peaks at scattering vector q ≈ 1.3 and 1.7 Ǻ−1. The mesomorphic fraction remained fairly constant around 0.35 up to 70 ºC, followed by decrease at ca. 70 ºC with concomitant increase in crystallinity due to partial transformation of mesophase into α crystals. Interestingly, a minor fraction of this mesophase persists up to 180 ºC, after apparent melting of all α crystals. As for the SAXS results, we have used model-fitting with ellipsoid form factor P(q) and distorted-FCC lattice structure factor S(q) to elucidate further details in the structural evolution process. After removal of background scattering , SAXS profiles obtained during programmed heating of glassy iPP from −10 to 180 ºC at 3 ºC/min can be interpreted with a sequence of events consistent with previously observations in cold crystallization of poly(9,9-di-n-octyl-2,7-fluorene) (PFO) and syndiotactic polystyrene (sPS). Specifically, the structural evolution of iPP nanograins involves four stages: (1) emergence of precursors (or oblate-like nanograins) of constant radius of gyration Rg ≈ 2.2 nm between −10 and 10 ºC in the absence of WAXS-detectable crystalline peaks, (2) the growth of nanograins to Rg ≈ 2.6 nm with concomitant development of WAXS-determined crystallinity (Xc,WAXS) from 10 to 50 ºC, (3) the coalescence of the oblate nanocrystals upon further heating above 50 ºC, and (4) melting above 130 ºC. Parallel evolution of chain conformation upon heating of glassy iPP was also monitored via FTIR spectroscopy. Results show that chain conformation in the mesomorphic phase is 31 helical, the same as in α crystals of iPP. In the temperature range of 25 to 40 ºC, there were significant increases in the peak area of the long-sequence (10 to 14 monomer units) 31 helix bands of different sequential lengths, signifying further development of mesomorphic or crystalline phases; this was then followed by a rapid decrease in intensities of the helix bands above 160 ºC, consistent with melting of α crystals indicated by parallel WAXS results although the presence of residual 31 helices extends deep into the melt state up to 210 ºC. We conclude that nanograins in the early stage of cold crystallization (which exhibit no crystalline peaks in the WAXS profile before subsequent transformation to crystals) of iPP coincides with this mesomorphic phase previously observed in quenched iPP glasses.


    ABSTRACT II 1. Background 1 1.1. Introduction 1 1.2. Mesomorphic Phase of iPP 1 1.3. Conformational Change of iPP during the Crystallization Process 1 1.4. Objective and approach 2 2. Experimental Details 4 2.1. Materials and specimen preparation 4 2.2. Instruments 4 2.3. Sample preparation. 5 2.4. Data Analysis 5 3. Results and Discussion 7 3.1. WAXS observations of structural evolution upon heating of quenched iPP glass 7 3.2. SAXS Observations upon Heating of Quenched iPP Glass 11 3.3. Data analysis of FTIR measurements 15 3.4. Structural Evolution of iPP glass during Programmed Heating 16 4. Conclusion 20 REFERENCES 21

    1. Natta, G.; Corradini, P. Nuovo Cimento (Suppl.) 1960, 15, 40.
    2. Mancik, Z. J. Macromol. Sci., Phys. 1972, 36, 101.
    3. Turner-Jones, A.; Cobbold, A. J. M. J. Polym. Sci. 1968, 6, 539.
    4. Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Polymer 1996, 37, 4979.
    5. Natta, G. SPE J. 1959, 15, 373.
    6. Hsu, C. C.; Geil, P. H.; Miyaji, H.; Asai, K. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 2379.
    7. Ogawa, T.; Miyaji, H.; Asai, K. J. Phys. Soc. Jpn. 1985, 54, 3668.
    8. Grubb, D. T.; Yoon, D. Y. Polym. Commun. 1986, 27, 84.
    9. Martorana, A.; Piccarolo, S.; Sapoundjieva, D. Macromol. Chem. Phys. 1999, 200, 531
    10. Strobl, G. Eur. Phys. J. E 2000, 3, 165.
    11. Konishi, T.; Nishida, K.; Kanaya, T. Macromolecules 2006, 39, 8035.
    12. Chen, S. H.; Lin, T. L. In Methods of Experimental Physics -Neutron Scattering in Condensed Matter Research; Sköld, K., Price, D. L., Eds.; Academic: New York, 1987; Vol. 23B, Chapter 16.
    13. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang, W. T.; Su, A. C. Macromolecules 2008, 41, 7630.
    14. Lai, Y. H.; Sun, Y. S.; Jeng, U.; Lin, J. M.; Lin, T. L.; Sheu, H. S.;Chuang, W. T.; Huang, Y. S.; Hsu, C. H.; Lee, M. T.; Lee, H. Y.; Liang, K. S.; Gabriel, A.; Koch, M. H. J. J. Appl. Crystallogr. 2006, 39, 871.
    15. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang,W. T.; Su, A. C. Macromolecules 2009, 42, 6656.
    16. Wang, Z. G.; Hsiao, B. S.; Srinivas, S.; Brown, G. M.; Tsou, A. H.; Cheng, S. Z. D.; Stein, R. S. Polymer 2001, 42, 7561.
    17. Androsch, R. Macromolecules 2008, 41, 533.
    18. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Ou, Y. T.; Chuang, W. T.; Su, A. C. Macromolecules 2008, 41, 7630.
    19. Lan, Y. K.; Su, A. C. Macromolecules 2010, 43, 1819-1829.
    20. Feigin, L. A.; Svergun, D. I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum: New York, 1987; p. 69.
    21. Baxter, R. J. J. Chem. Phys. 1970, 52, 4559.
    22. Pedersen, J. S. J. Appl. Crystallogr. 1994, 27, 595.
    23. Tsao, C.-S.; Lin, T.-L.; Yu, M.-S. Physica B 1999, 271, 322.
    24. Krakovasky, I.; Urakawa, H.; Kajiwara, K. Polymer 1997, 14, 3645.
    25. Chen, S. H.; Sheu, E. Y.; Kalus, J.; Hoffmann, H. J. Appl. Crystallogr. 1988, 21, 751.
    26. Zerbi, G.; Ciampelli, F.; Zamboni, V. J. Polym. Sci. 1963, C7, 141.
    27. Kobayashi, M.; Akita, K.; Tadokoro, H. Makromol. Chem. 1968, 118, 324.
    28. Kissin, Y. V.; Rishina, L. A. Eur. Polym. J. 1976, 12, 757.
    29. Kissin, Y. V. Adv. Polym. Sci. 1974, 15, 91.
    30. Kissin, Y. V.; Tsvetkova, V. I.; Chirkov, N. M. Vysokomol. Soedin. 1968, A10, 1092.
    31. Miyamoto, T.; Inagaki, H. J. Polym. Sci. 1969, B7, 963.
    32. Kissin, Y. V. Adv. Polym. Sci. 1975, 15, 92.
    33. Hanna, L. A.; Hendra, P. J.; Maddams, W.; Willis, H. A.; Zichy, V.; Cudby, M. E. A. Polymer 1988, 29, 1843.
    34. Zhu, X. Y.; Yan, D. Y.; Yao, H. X.; Zhu, P. F. Macromol. Rapid Commun. 2000, 21, 354.
    35. Zhu, X. Y.; Yan, D. Y. Macromol. Chem. Phys. 2001, 202, 1109.
    36. Zhu, X.; Li, Y.; Yan, D.; Zhu, P.; Lu, Q. Colloid Polym. Sci. 2001, 279, 29
    37. Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, 4th ed.; Wiley: New York, 1999.
    38. Kissin, Y. V.; Tsvetkova, V. I.; Chirkov, N. M. Eur. Polym. J. 1972, 8, 529.
    39. Kissin, Y. V.; Rishina, L. A. Eur. Polym. J. 1976, 12, 757.
    40. Kobayashi, M.; Akita, K.; Tadokoro, H. Makromol. Chem. 1968, 118, 324.
    41. Hanna, L. A.; Hendra, P. J.; Maddams, W.; Willis, H. A.; Zichy, V.; Cudby, M. E. A. Polymer 1988, 29, 1843.
    42. Passingham, C.; Hendra, P. J.; Cudby, M. E. A.; Zichy, V.; Weller, M. Eur. Polym. J. 1990, 26, 631.
    43. Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford University Press: New York, 1986; Chapter 10.
    44. Matsuba, G.; Kaji, K.; Nishida, K.; Kanaya, T.; Imai, M. Polym J. 1999, 31, 722.
    45. Shimada, T.; Doi, M.; Okano, K. J. Chem. Phys. 1988, 88, 2815.
    46. Doi, M.; Shimada, T.; Okano, K. J. Chem. Phys. 1988, 88, 4070.
    47. Shimada, T.; Doi, M.; Okano, K. J. Chem. Phys. 1988, 88, 7181.
    48. Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T. Polymer 1992, 33, 4451.
    49. Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T. Polymer 1992, 33, 4457.
    50. Chen, S. H.; Su, A. C.; Chou, H. L.; Peng, K. Y.; Chen, S. A. Macromolecules 2004, 37, 167.
    51. Chen, S. H.; Su, A. C.; Han, S. R.; Chen, S. A.; Lee, Y. Z. Macromolecules 2004, 37, 181.
    52. Chen, S. H.; Su, C. H.; Su, A. C.; Chen, S. A. J. Phys. Chem.B 2004, 108, 8855.
    53. Chen, S. H.; Chou, H. L.; Su, A. C.; Chen, S. A. Macromolecules 2004, 37, 6833.
    54. Jeng, U.; Hsu, C. H.; Sheu, H. S.; Lee, H. Y.; Inigo, A. R.; Chiu, H. C.; Fann, W. S.; Chen, S. H.; Su, A. C.; Lin, T. L.; Peng, K. Y.; Chen, S. A. Macromolecules 2005, 38, 6566.
    55. Chen, S. H.; Su, A. C.; Chen, S. A. J. Phys. Chem. B 2005, 109, 10067.
    56. Chen, S. H.; Su, A. C.; Chen, S. A. Macromolecules 2006, 39, 9143.
    57. Chen, S. H.; Wu, Y. H.; Su, C. H.; Jeng, U.; Hsieh, C. C.; Su, A. C.; Chen, S. A. Macromolecules 2007, 40, 5353.
    58. Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M. Adv. Polym. Sci. 2005, 191, 187 and references cited therein.
    59. Schultz, J. M.; Lin, J. S.; Hendricks, R. W.; Petermann, J.; Gohil, R. M. J. Polym. Sci., Polym. Phys. 1981, 19, 609.
    60. Heeley, E. L.; Poh, C. K.; Li, W.; Maidens, A.; Bras, W.; Dolbnya, I. P.; Gleeson, A. J.; Terrill, N. J.; Fairclough, J. P. A.; Olmsted, P. D.; Ristic, R. I.; Hounslow, M. J.; Ryan, A. J. Faraday Discuss. 2002, 122, 343.
    61. Wang, Z.G.; Hsiao, B. S.; Sirota, E. B.; Srinivas, S. Polymer 2000, 41, 8825.
    62. Fougnies, C.; Damman, P.; Villers, D.; Dosiere, M.; Koch, M. H. J. Macromolecules 1997, 30, 1385.
    63. Mano, J. F.; Wang, Y.; Viana, J. C.; Denchev, Z.; Oliveira, M. J. Macromol. Mater. Eng. 2004, 289, 910.
    64. Terrill, N. J.; Fairclough, P. A.; Towns-Andrews, E.; Komanschek, B. U.; Young, R. J.; Ryan, A. J. Polymer 1998, 39, 2381.
    65. Imai, M.; Kaji, K.; Kanaya, T. Phys. Rev. Lett. 1993, 71, 4162.
    66. Penn, R. L. J. Phys. Chem. B 2004, 108, 12707.
    67. Ryan, A. J.; Fairclough, J. P. A.; Terrill, N. J.; Olmsted, P. D.; Poon, W. C. K. Faraday Discuss. 1999, 112, 13.
    68. Zhu, X. Y.; Yan, D. Y.; Fang Y. P. J. Phys. Chem. B 2001, 105, 12461
    69. Miyamoto, Y.; Fukao, K.; Yoshida, T.; Tsurutani, N.; Miyaji, H. J.Phys. Soc. Jpn. 2000, 69, 1735.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE