研究生: |
姜智豪 Chiang, Chi-Haw |
---|---|
論文名稱: |
甲基磺酸鍍液系統之銅及銅銀的電鍍與微結構研究以及在導線之應用 Electroplating and microstructure investigations of copper and copper-silver deposits from methanesulfonic acid and their application to electronic circuits |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
蔡德豪
Tsai, De-Hao 廖建能 Liao, Chien-Neng 張仍奎 Chang, Jeng-Kuei 王丞浩 Wang, Chen-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 電化學沉積 、電鍍銅 、電鍍銅-銀 、硫脲 、微結構 、導線 、數值計算 |
外文關鍵詞: | electrochemical deposition, copper plating, copper-silver plating, thiourea, microstructure, interconnect, numerical calculation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電鍍銅沉積廣泛應用於微電子線路製作,隨著電子元件持續地進行微小化的趨勢,銅互連導線因尺寸微縮將可能造成電遷移效應產生,此種現象是一種牽涉擴散、熱與電等影響,造成金屬原子移動引發短路與斷路等可靠度疑慮。電鍍銅沉積薄膜的結晶特徵及微結構與微電子導線的特性及可靠度有密切相關。此外,隨著線路微縮的技術不斷前進,適形化亦是電子元件發展的另一個趨勢,此已正逐漸應用於通訊電子、車用電子、醫療電子等領域。
本項研究以甲基磺酸鍍液系統進行銅與銅銀電鍍技術開發,並以硫脲(TU)或烯丙基硫脲(ATU)作為添加劑,藉由一系列調整添加劑與其濃度、電流密度等因素,呈現鍍層結晶結構的轉變,透過電化學分析與鍍層的結晶優選方向、表面粗糙度與形貌等微結構觀察作影響探討。此外,電鍍層厚度的均勻度將影響線路定義加工與其品質,本項研究利用數值模擬對於非平面基材表面的電鍍,進行鍍銅厚度分佈計算與影響因子探討。
本論文的第一部分主要研究添加劑硫脲(TU)和烯丙基硫脲(ATU)對於甲磺酸(MSA)鍍液系統的銅電鍍沉積行為和微觀結構影響。藉由控制添加劑類型、添加劑濃度和電流密度,瞭解銅鍍層的晶體結構變化。從電化學分析來看,TU和ATU均顯示出對電鍍銅有抑制能力,且在鍍液中TU與銅離子有著較強的交互作用。隨著在鍍液中引入 TU 和 ATU 添加劑,可使得鍍銅(111)結晶方向優取的電流密度操作範圍變得更寬廣。 此外,儘管TU和ATU這兩種添加劑具有相似的分子結構,並顯示出對銅沉積的抑制能力,但對於銅電鍍過程中的晶體成核和生長的影響有明顯差異,導致銅鍍層的表面形貌和粗糙度顯著不同。
本論文的第二部分更進一步應用甲基磺酸系統進行銅銀雙成分電鍍共沉積與其微結構特性探討,藉由引入TU作為錯合劑,可以改善與消除酸性鍍銅銀系統中的氯化銀沉澱現象。透過調整電鍍液成分與電流密度,電沉積層的銀含量可控制於0.7至43 wt. %的範圍。此外,對於鍍層的相關特徵,例如銀含量、結晶晶粒尺寸、結晶方向與粗糙鍍等均有完整探討,以期本項開發在未來可應用於微電子導線。
本論文的第三部分探討在非平面基材表面的電鍍銅製程設計,藉由數值計算的方式進行電鍍銅厚度分佈的模擬預估與改善,對於均勻鍍銅厚度分佈提供最適化的製程條件與反應器設計,此項將有助於非平面線路製作與其他相關的高精密度電子線路製作。
Copper electrodeposition is extensively applied in the field of the microelectronic interconnects. With the trend of the miniaturization of the electronics, nowadays, the continuous pursuit of downscaling in copper interconnects probably causes reliability concern resulting from the electromigration (EM) effect. It is a kind of mass transfer phenomenon related to diffusion, heat, and electrical effects, which causes the metal movement and short-circuit issue. The crystalline characteristics and microstructures of copper electrodeposition are highly related to the properties and reliability of interconnects. Besides, with the continuous advancement of the miniaturization technology, conformalization of the electronics elements has gradually been applying to communication electronics, automotive electronics, medical electronics and other fields.
This study aims to develop the copper and bimetallic copper-silver plating from the methanesulfonic acid (MSA) bath and discuss the effects of the additives, thiourea (TU) and allyl thiourea (ATU). The deposition can be manipulated by adjusting the type and concentration of the additives and the current density, which has been investigatived through the electrochemical analysis and micro-structure observation, including preferential crystallographic orientation, surface roughness and morphology. Besides, the uniformity of the deposition thickness may affect the pattern define and quality of the circuit. This study utilizes the numerical to discuss the thickness distribution of the copper plating on the non-planar substrate and its affecting factors.
The first part of this thesis mainly focuses on the effects of two additives, thiourea (TU) and allyl thioura (ATU), on the electrodeposition behavior and microstructure development of copper deposits plated from the methane-sulfonic acid (MSA) bath. Three variables, including additive types, additive concentration, and current density, have been investigated in order to observe the variation in the crystallographic texture of Cu deposits. From the electrochemical analysis, TU and ATU show the suppression ability of Cu deposition and the interaction strength between Cu2+ and ATU is weaker than that between Cu2+ and TU. The operating current density range of the preferential (111) Cu deposition becomes wider with the introduction of TU and ATU additives in the plating bath. The influences of TU and ATU on the nucleation and growth of Cu grains are significantly different, leading to the very different surface morphologies and surface roughness of resultant Cu films although both additives are of the similar molecular structures and show a suppression ability on Cu deposition.
The second part of this thesis further investigates the bimetallic copper-silver deposits with variable compositions, which were prepared by electrodeposition from the methanesulfonate bath containing chloride ions. The precipitation of AgCl in this acid copper-silver bath can be avoided by the introduction of thiourea (TU) as the complexing agent. The composition and microstructure of such deposits are significantly affected by the introduction of TU, silver ion concentration, and deposition potential. The silver content varying from 0.7 to 43 w/o (weight percent) in the deposits is effectively adjusted by the systematic variation in the electrolyte composition and current density. The microstructures, such as the silver content, grain size, crystalline preferential orientation, and roughness of this series of Cu-Ag deposits are systematically compared for future electronic applications.
The third part of this thesis utilized the numerical calculation to improve the thickness distribution of the copper deposits prepared by electroplating. The results also gave the feedback to the reactor design and process factor optimization. This technique will be beneficial to the development of the nonplanar circuit and other related high-precision conformal electronics.
[1] S. Murarka, Metallization: Theory and Practice for VLSI and ULSI, Butterworth-Heinemann (UK), 1992.
[2] K.C. Saraswat, F. Mohammadi, Effect of scaling of interconnections on the time delay of VLSI circuits, IEEE Transactions on Electron Devices, 29 (1982) 645-650.
[3] C.A. Mack, Fifty years of Moore's law, IEEE Transactions on semiconductor manufacturing, 24 (2011) 202-207.
[4] V. Fiks, Interaction of conduction electrons with single dislocations in metals, Phys. Solid State, 1 (1959) 14.
[5] K.-N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, Journal of applied physics, 94 (2003) 5451-5473.
[6] J. Lloyd, Electromigration in integrated circuit conductors, Journal of Physics D: Applied Physics, 32 (1999) R109.
[7] I.A. Blech, Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, 47 (1976) 1203-1208.
[8] P.C. Andricacos, Copper on-chip interconnections, The Electrochemical Society Interface, 8 (1999) 6.
[9] P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections, IBM Journal of Research and Development, 42 (1998) 567-574.
[10] I. Blech, Electromigration and crevice formation in thin metallic films, Thin Solid Films, 13 (1972) 117-129.
[11] C.L. Pavithra, B.V. Sarada, K.V. Rajulapati, M. Ramakrishna, R.C. Gundakaram, T.N. Rao, G. Sundararajan, Controllable crystallographic texture in copper foils exhibiting enhanced mechanical and electrical properties by pulse reverse electrodeposition, Crystal Growth & Design, 15 (2015) 4448-4458.
[12] T.-C. Liu, C.-M. Liu, H.-Y. Hsiao, J.-L. Lu, Y.-S. Huang, C. Chen, Fabrication and characterization of (111)-oriented and nanotwinned Cu by DC electrodeposition, Crystal Growth & Design, 12 (2012) 5012-5016.
[13] C.-N. Liao, C.-Y. Lin, C.-L. Huang, Y.-S. Lu, Morphology, Texture and Twinning Structure of Cu Films Prepared by Low-Temperature Electroplating, Journal of The Electrochemical Society, 160 (2013) D3070.
[14] T.-C. Chan, Y.-L. Chueh, C.-N. Liao, Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition, Crystal growth & design, 11 (2011) 4970-4974.
[15] K. Abe, Y. Harada, M. Yoshimaru, H. Onoda, Texture and electromigration performance in damascene interconnects formed by reflow sputtered Cu film, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22 (2004) 721-728.
[16] K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, K.-N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science, 321 (2008) 1066-1069.
[17] H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen, K.-N. Tu, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper, Science, 336 (2012) 1007-1010.
[18] Y.-J. Li, K.-N. Tu, C. Chen, Tensile properties and thermal stability of unidirectionally< 111>-oriented nanotwinned and< 110>-oriented microtwinned copper, Materials, 13 (2020) 1211.
[19] S.I. Association, International technology roadmap for semiconductors (ITRS), 2007.
[20] S. Strehle, J. Bartha, K. Wetzig, Electrical properties of electroplated Cu (Ag) thin films, Thin solid films, 517 (2009) 3320-3325.
[21] B. Raphael, I.F. Smith, Fundamentals of computer-aided engineering, John wiley & sons2003.
[22] T.M. Braun, D. Josell, J. John, T. Moffat, Simulation of Copper Electrodeposition in Through-Hole Vias, Journal of the Electrochemical Society, 167 (2019) 013510.
[23] M. Georgiadou, D. Veyret, R. Sani, R. Alkire, Simulation of shape evolution during electrodeposition of copper in the presence of additive, Journal of The Electrochemical Society, 148 (2001) C54-C58.
[24] S. Strehle, S. Menzel, K. Wetzig, J. Bartha, Microstructure of electroplated Cu (Ag) alloy thin films, Thin Solid Films, 519 (2011) 3522-3529.
[25] I. Volov, E. Swanson, B. O'Brien, S.W. Novak, R. van den Boom, K. Dunn, A.C. West, Pulse-plating of copper-silver alloys for interconnect applications, Journal of the Electrochemical Society, 159 (2012) D677-D683.
[26] S. Strehle, S. Menzel, A. Jahn, U. Merkel, J. Bartha, K. Wetzig, Electromigration in electroplated Cu (Ag) alloy thin films investigated by means of single damascene Blech structures, Microelectronic engineering, 86 (2009) 2396-2403.
[27] S. Strehle, S. Menzel, J. Bartha, K. Wetzig, Electroplating of Cu (Ag) thin films for interconnect applications, Microelectronic engineering, 87 (2010) 180-186.
[28] M.J. Kim, H.J. Lee, S.H. Yong, O.J. Kwon, S.-K. Kim, J.J. Kim, Facile formation of Cu-Ag film by electrodeposition for the oxidation-resistive metal interconnect, Journal of The Electrochemical Society, 159 (2012) D253-D259.
[29] M.J. Kim, S.H. Yong, H.S. Ko, T. Lim, K.J. Park, O.J. Kwon, J.J. Kim, Superfilling of Cu-Ag using electrodeposition in cyanide-based electrolyte, Journal of The Electrochemical Society, 159 (2012) D656-D658.
[30] M.J. Kim, K.J. Park, T. Lim, O.J. Kwon, J.J. Kim, Fabrication of Cu-Ag interconnection using electrodeposition: The mechanism of superfilling and the properties of Cu-Ag film, Journal of The Electrochemical Society, 160 (2013) D3126-D3133.
[31] M. Gernon, Environmental benefits of methanesulfonic acid. Comparative properties and advantages, Green chemistry, 1 (1999) 127-140.
[32] C. Low, F. Walsh, Linear sweep voltammetry of the electrodeposition of copper from a methanesulfonic acid bath containing a perfluorinated cationic surfactant, Surface and Coatings Technology, 202 (2008) 3050-3057.
[33] A. Purvis, R. McWilliam, S. Johnson, N.L. Seed, G.L. Williams, A. Maiden, P. Ivey, Photolithographic patterning of bihelical tracks onto conical substrates, Journal of Micro/Nanolithography, MEMS, and MOEMS, 6 (2007) 043015.
[34] J.J. Adams, E.B. Duoss, T.F. Malkowski, M.J. Motala, B.Y. Ahn, R.G. Nuzzo, J.T. Bernhard, J.A. Lewis, Conformal printing of electrically small antennas on three‐dimensional surfaces, Advanced Materials, 23 (2011) 1335-1340.
[35] E.T. Ogawa, K.-D. Lee, V.A. Blaschke, P.S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections, IEEE Transactions on reliability, 51 (2002) 403-419.
[36] F. d'Heurle, R. Rosenberg, Electromigration in thin films, Physics of Thin Films, Elsevier1973, pp. 257-310.
[37] P.S. Ho, T. Kwok, Electromigration in metals, Reports on Progress in Physics, 52 (1989) 301.
[38] C.-K. Hu, J. Harper, Copper interconnections and reliability, Materials Chemistry and Physics, 52 (1998) 5-16.
[39] I. Blech, H. Sello, T.S. Shilliday, Physics of failure in electronics, USAF Rome Air Development Center Reliability Series Proc, 5 (1966) 496-501.
[40] I. Ames, F. d'Heurle, R. Horstmann, Reduction of electromigration in aluminum films by copper doping, IBM Journal of Research and Development, 14 (1970) 461-463.
[41] I.A. Blech, Copper electromigration in aluminum, Journal of Applied Physics, 48 (1977) 473-477.
[42] S. Vaidya, D. Fraser, W. Lindenberger, Electromigration in fine‐line sputter‐gun Al, Journal of Applied Physics, 51 (1980) 4475-4482.
[43] J. Howard, J. White, P. Ho, Intermetallic compounds of Al and transitions metals: Effect of electromigration in 1–2‐μm‐wide lines, Journal of Applied Physics, 49 (1978) 4083-4093.
[44] S. Vaidya, T. Sheng, A. Sinha, Linewidth dependence of electromigration in evaporated Al‐0.5% Cu, Applied Physics Letters, 36 (1980) 464-466.
[45] V. Dubin, Copper plating techniques for ULSI metallization, Advanced Metallization for ULSI Applications in 1997, DOI (1997) 405-412.
[46] C.W. Kaanta, S.G. Bombardier, W.J. Cote, W.R. Hill, G. Kerszykowski, H.S. Landis, D.J. Poindexter, C.W. Pollard, G.H. Ross, J.G. Ryan, Dual damascene: a ULSI wiring technology, 1991 Proceedings Eighth International IEEE VLSI Multilevel Interconnection Conference, IEEE, 1991, pp. 144-152.
[47] N. Herbots, O. Hellman, P. Cullen, O. Vancauwenberghe, Semiconductor‐based heterostructure formation using low energy ion beams: Ion beam deposition (IBD) & combined ion and molecular beam deposition (CIMD), AIP Conference Proceedings, American Institute of Physics, 1988, pp. 259-290.
[48] K. Masu, Y. Hiura, K. Tsubouchi, T. Ohmi, N. Mikoshiba, In Situ Observation of Electromigration in Cu Film Using Scanning µ-Reflection High-Energy Electron Diffraction Microscope, Japanese journal of applied physics, 30 (1991) 3642-3645.
[49] C. Park, R. Vook, Activation energy for electromigration in Cu films, Applied Physics Letters, 59 (1991) 175-177.
[50] J. Lloyd, J. Clement, Electromigration in copper conductors, Thin solid films, 262 (1995) 135-141.
[51] C.-K. Hu, J. Ohm, L. Gignac, C. Breslin, S. Mittal, G. Bonilla, D. Edelstein, R. Rosenberg, S. Choi, J. An, Electromigration in cu (Al) and cu (Mn) damascene lines, Journal of applied physics, 111 (2012) 093722-093726.
[52] K. Lee, C. Hu, K.-N. Tu, In situ scanning electron microscope comparison studies on electromigration of Cu and Cu (Sn) alloys for advanced chip interconnects, Journal of applied physics, 78 (1995) 4428-4437.
[53] C.K. Hu, K. Lee, K. Lee, C. Cabral Jr, E. Colgan, C. Stanis, Electromigration Drift Velocity in Al‐Alloy and Cu‐Alloy Lines, Journal of the Electrochemical Society, 143 (1996) 1001-1006.
[54] P. Ding, W. Lanford, S. Hymes, S. Murarka, Effects of the addition of small amounts of Al to copper: Corrosion, resistivity, adhesion, morphology, and diffusion, Journal of applied physics, 75 (1994) 3627-3631.
[55] C. Cabral Jr, J. Harper, K. Holloway, D. Smith, R. Schad, Preparation of low resistivity Cu–1 at.% Cr thin films by magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10 (1992) 1706-1712.
[56] W. Lanford, P. Ding, W. Wang, S. Hymes, S. Muraka, Low-temperature passivation of copper by doping with Al or Mg, Thin Solid Films, 262 (1995) 234-241.
[57] C. Park, R. Vook, Electromigration-resistant Cu-Pd alloy films, Thin Solid Films, 226 (1993) 238-247.
[58] C.-K. Hu, B. Luther, Electromigration in two-level interconnects of Cu and Al alloys, Materials Chemistry and Physics, 41 (1995) 1-7.
[59] M. Paunovic, M. Schlesinger, Modern Electroplating. 5th. Hoboken, NJ: John Wiley and Sons, 2011.
[60] R. Sard, Electrodeposited Metallic Coatings, Pergamon Press, Encyclopedia of Materials Science and Engineering., 2 (1986).
[61] D.A. Dudek, P.S. Fedkiw, Electrodeposition of copper from cuprous cyanide electrolyte: I. Current distribution on a stationary disk, Journal of Electroanalytical Chemistry, 474 (1999) 16-30.
[62] D. Gabe, Hull and his cell, Transactions of the IMF, 85 (2007) 285-286.
[63] T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, Via-filling using electroplating for build-up PCBs, Electrochimica Acta, 47 (2001) 85-89.
[64] G. Fabricius, G. Sundholm, The effect of additives on the electrodeposition of copper studied by the impedance technique, Journal of applied electrochemistry, 14 (1984) 797-801.
[65] N. Pradhan, P. Krishna, S. Das, Influence of chloride ion on electrocrystallization of copper, Plating and surface finishing, 83 (1996) 56-63.
[66] J. Reid, A. David, Effects of polyethylene glycol on the electrochemical characteristics of copper cathodes in an acid copper medium, Plating and surface finishing, 74 (1987) 66-70.
[67] P.M. Vereecken, R.A. Binstead, H. Deligianni, P.C. Andricacos, The chemistry of additives in damascene copper plating, IBM Journal of Research and Development, 49 (2005) 3-18.
[68] T.P. Moffat, B. Baker, D. Wheeler, D. Josell, Accelerator aging effects during copper electrodeposition, Electrochemical and Solid State Letters, 6 (2003) C59-C62.
[69] J. Reid, Copper electrodeposition: principles and recent progress, Japanese journal of applied physics, 40 (2001) 2650-2657.
[70] R.F. Bernards, G. Fisher, W. Sonnenberg, E.J. Cerwonka, S. Fisher, Additive for acid-copper electroplating baths to increase throwing power, U.S. Patent No. 5,051,154, 1991.
[71] P.C. Andricacos, I.-C. Chang, H. Deligianni, W.J. Horkans, Acid electrolyte solution and process for the electrodeposition of copper-rich alloys exploiting the phenomenon of underpotential deposition, U.S. Patent No. 5,385,661, 1995.
[72] M. Hasan, J.F. Rohan, Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications, Journal of the Electrochemical Society, 157 (2010) D278.
[73] S.K. Cho, M.J. Kim, J.J. Kim, MSA as a supporting electrolyte in copper electroplating for filling of damascene trenches and through silicon vias, Electrochemical and Solid State Letters, 14 (2011) D52-D56.
[74] H.H. Wu, S.R. Lee, TSV plating using copper methanesulfonate electrolyte with single component suppressor, 2012 4th Electronic System-Integration Technology Conference, IEEE, 2012, pp. 1-5.
[75] Q. Li, H. Ling, H. Cao, Z. Bian, M. Li, D. Mao, Through silicon via filling by copper electroplating in acidic cupric methanesulfonate bath, 2009 International Conference on Electronic Packaging Technology & High Density Packaging, IEEE, 2009, pp. 68-72.
[76] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, Full copper wiring in a sub-0.25/spl mu/m CMOS ULSI technology, International Electron Devices Meeting. IEDM Technical Digest, IEEE, 1997, pp. 773-776.
[77] T.-H. Tsai, J.-H. Huang, Electrochemical investigations for copper electrodeposition of through-silicon via, Microelectronic Engineering, 88 (2011) 195-199.
[78] W. Shao, G. Pattanaik, G. Zangari, Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes, Journal of the Electrochemical Society, 154 (2007) D201-D207.
[79] D. Grujicic, B. Pesic, Electrodeposition of copper: the nucleation mechanisms, Electrochimica Acta, 47 (2002) 2901-2912.
[80] R. Winand, Contribution to the study of copper electrocrystallization in view of industrial applications: submicroscopic and macroscopic considerations, Electrochimica acta, 43 (1998) 2925-2932.
[81] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, 304 (2004) 422-426.
[82] L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength in nanotwinned copper, Science, 323 (2009) 607-610.
[83] K.-J. Chen, J.A. Wu, C. Chen, Effect of Reverse Currents during Electroplating on the⟨ 111⟩-Oriented and Nanotwinned Columnar Grain Growth of Copper Films, Crystal Growth & Design, 20 (2020) 3834-3841.
[84] Y.-J. Li, K.-N. Tu, C. Chen, Tensile properties of< 111>-Oriented nanotwinned Cu with different columnar grain structures, Materials, 13 (2020) 1310.
[85] M.S. Kang, S.-K. Kim, K. Kim, J.J. Kim, The influence of thiourea on copper electrodeposition: Adsorbate identification and effect on electrochemical nucleation, Thin Solid Films, 516 (2008) 3761-3766.
[86] M. Alodan, W. Smyrl, Effect of thiourea on copper dissolution and deposition, Electrochimica acta, 44 (1998) 299-309.
[87] D. Papapanayiotou, R.N. Nuzzo, R.C. Alkire, Adsorption of thiourea on copper electrodes monitored by in situ infrared spectroscopy, Journal of the Electrochemical Society, 145 (1998) 3366-3373.
[88] D. Suarez, F. Olson, Nodulation of electrodeposited copper in the presence of thiourea, Journal of applied electrochemistry, 22 (1992) 1002-1010.
[89] K.S. Kumar, K. Biswas, R. Balasubramaniam, Mechanism of film growth of pulsed electrodeposition of nanocrystalline copper in presence of thiourea, Journal of Nanoparticle Research, 13 (2011) 6005-6012.
[90] Y. Kao, G. Tu, C. Huang, J. Chang, The annealing behavior of copper deposit electroplated in sulfuric acid bath with various concentrations of thiourea, Materials Science and Engineering: A, 382 (2004) 104-111.
[91] N. Tantavichet, M.D. Pritzker, Effect of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions, Electrochimica acta, 50 (2005) 1849-1861.
[92] K.S. Kumar, K. Biswas, Effect of thiourea on grain refinement and defect structure of the pulsed electrodeposited nanocrystalline copper, Surface and Coatings Technology, 214 (2013) 8-18.
[93] P. Ding, W. Lanford, S. Hymes, S. Murarka, Oxidation resistant high conductivity copper films, Applied physics letters, 64 (1994) 2897-2899.
[94] S. Strehle, S. Menzel, H. Wendrock, J. Acker, K. Wetzig, Microstructural investigation of electrodeposited CuAg-thin films, Microelectronic engineering, 70 (2003) 506-511.
[95] K. Holloway, P.M. Fryer, Tantalum as a diffusion barrier between copper and silicon, Applied Physics Letters, 57 (1990) 1736-1738.
[96] M. Wang, Y. Lin, M. Chen, Barrier properties of very thin Ta and TaN layers against copper diffusion, Journal of the Electrochemical Society, 145 (1998) 2538-2545.
[97] M. Lane, R.H. Dauskardt, N. Krishna, I. Hashim, Adhesion and reliability of copper interconnects with Ta and TaN barrier layers, Journal of Materials Research, 15 (2000) 203-211.
[98] K.-M. Yin, L. Chang, F.-R. Chen, J.-J. Kai, C.-C. Chiang, G. Chuang, P. Ding, B. Chin, H. Zhang, F. Chen, Oxidation of Ta diffusion barrier layer for Cu metallization in thermal annealing, Thin Solid Films, 388 (2001) 27-33.
[99] R. Solanki, B. Pathangey, Atomic layer deposition of copper seed layers, Electrochemical and solid state letters, 3 (2000) 479-480.
[100] M.J. Wolf, T. Dretschkow, B. Wunderle, N. Jurgensen, G. Engelmann, O. Ehrmann, A. Uhlig, B. Michel, H. Reichl, High aspect ratio TSV copper filling with different seed layers, 2008 58th Electronic Components and Technology Conference, IEEE, 2008, pp. 563-570.
[101] S. Strehle, S. Menzel, H. Wendrock, J. Acker, T. Gemming, K. Wetzig, Thermo-mechanical behavior and microstructural evolution of electrochemically deposited low-alloyed Cu (Ag) thin films, Microelectronic engineering, 76 (2004) 205-211.
[102] W. Brückner, H. Griessmann, Apparatus for the laser-optical measurement of stress in thin films: Results on CuNi, Review of scientific instruments, 69 (1998) 3662-3665.
[103] W.D. Nix, Mechanical properties of thin films, Metallurgical transactions A, 20 (1989) 2217-2245.
[104] P.A. Flinn, Measurement and interpretation of stress in copper films as a function of thermal history, Journal of materials research, 6 (1991) 1498-1501.
[105] P. Subramanian, J. Perepezko, The Ag-Cu (silver-copper) system, Journal of Phase Equilibria, 14 (1993) 62-75.
[106] K. Barmak, G. Lucadamo, C. Cabral Jr, C. Lavoie, J. Harper, Dissociation of dilute immiscible copper alloy thin films, Journal of applied physics, 87 (2000) 2204-2214.
[107] S. Lagrange, S. Brongersma, M. Judelewicz, A. Saerens, I. Vervoort, E. Richard, R. Palmans, K. Maex, Self-annealing characterization of electroplated copper films, Microelectronic Engineering, 50 (2000) 449-457.
[108] R.C. Jaeger, Introduction to microelectronic fabrication, Prentice Hall Upper Saddle River, NJ2002.
[109] G.-T. Chiu, J.M. Shaw, Optical lithography: introduction, IBM Journal of Research and Development, 41 (1997) 3-6.
[110] R.J. Shul, S.J. Pearton, Handbook of advanced plasma processing techniques, Springer Science & Business Media2011.
[111] N.-J. Park, D. Field, Predicting thickness dependent twin boundary formation in sputtered Cu films, Scripta materialia, 54 (2006) 999-1003.
[112] T. Wang, P. Lindquist, S. Erdemli, E.C. Basol, R. Zhang, C.E. Uzoh, B.M. Basol, Characterization of copper layers grown by electrochemical mechanical deposition technique, Thin solid films, 478 (2005) 345-351.
[113] S. Spaic, M. Pristavec, Ausscheidungsverhalten in Cu-Ag-Legierungen, Zeitschrift für Metallkunde, 88 (1997) 925-928.
[114] J.G. Speight, Lange's handbook of chemistry, McGraw-Hill Education2017.
[115] J. Mendez, R. Akolkar, U. Landau, Polyether suppressors enabling copper metallization of high aspect ratio interconnects, Journal of The Electrochemical Society, 156 (2009) D474-D479.
[116] J.W. Gallaway, A.C. West, PEG, PPG, and their triblock copolymers as suppressors in copper electroplating, Journal of The Electrochemical Society, 155 (2008) D632-D639.
[117] J.W. Gallaway, M.J. Willey, A.C. West, Acceleration kinetics of PEG, PPG, and a triblock copolymer by SPS during copper electroplating, Journal of The Electrochemical Society, 156 (2009) D146-D154.
[118] W.-P. Dow, M.-Y. Yen, S.-Z. Liao, Y.-D. Chiu, H.-C. Huang, Filling mechanism in microvia metallization by copper electroplating, Electrochimica Acta, 53 (2008) 8228-8237.
[119] B. Zhao, H. Kim, Y. Shimogaki, Effects of Ag addition on the resistivity, texture and surface morphology of Cu metallization, Japanese journal of applied physics, 44 (2005) L1278-L1281.
[120] B. Zhao, T. Momose, Y. Shimogaki, Deposition of Cu–Ag alloy film by supercritical fluid deposition, Japanese journal of applied physics, 45 (2006) L1296-L1299.
[121] D. Josell, B. Baker, C. Witt, D. Wheeler, T.P. Moffat, Via filling by electrodeposition: Superconformal silver and copper and conformal nickel, Journal of the Electrochemical Society, 149 (2002) C637-C641.
[122] D. Josell, D. Wheeler, T.P. Moffat, Gold superfill in submicrometer trenches: Experiment and prediction, Journal of the Electrochemical Society, 153 (2006) C11-C18.
[123] D. Josell, T.P. Moffat, D. Wheeler, Superfilling when adsorbed accelerators are mobile, Journal of the Electrochemical Society, 154 (2007) D208-D214.
[124] R. Bernasconi, L. Nobili, L. Magagnin, Electrodeposition of supersaturated CuAg alloys in pyrophosphate-iodide electrolytes, ECS Transactions, 58 (2014) 53-60.
[125] M. Paunovic, Electrochemical deposition, Encyclopedia of Electrochemistry: Online, DOI (2007) 107-131.
[126] R.K. Pandey, S. Sahu, S. Chandra, Handbook of semiconductor electrodeposition, M. Dekker1996.
[127] G. Fabricius, A rotating ring-disc study of the influence of thiourea on the electrodeposition of copper from acid sulphate solutions, Electrochimica acta, 39 (1994) 611-612.
[128] H. Ratajczak, L. Pajdowski, The system copper (II)-thiourea in 0· 1 N nitric acid, Journal of Inorganic and Nuclear Chemistry, 36 (1974) 459-461.
[129] A. Gherrou, H. Kerdjoudj, R. Molinari, E. Drioli, Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier, Separation and purification technology, 28 (2002) 235-244.
[130] S. Muthaiah, A. Bhatia, M. Kannan, Stability of Metal Complexes, Stability and Applications of Coordination Compounds, IntechOpen2020.
[131] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司2002.
[132] A.C. West, Electrochemistry and Electrochemical Engineering: An Introduction, Alan C. West2012.
[133] C.-N. Liao, C.-Y. Lin, C.-L. Huang, Y.-S. Lu, Morphology, texture and twinning structure of Cu films prepared by low-temperature electroplating, Journal of The Electrochemical Society, 160 (2013) D3070-D3074.
[134] V. Kozlov, L.P. Bicelli, Texture formation of electrodeposited fcc metals, Materials chemistry and physics, 77 (2003) 289-293.
[135] B.-I. Noh, J.-B. Lee, S.-B. Jung, Effect of surface finish material on printed circuit board for electrochemical migration, Microelectronics Reliability, 48 (2008) 652-656.
[136] M.J. Kim, M.A. Cruz, S. Ye, A.L. Gray, G.L. Smith, N. Lazarus, C.J. Walker, H.H. Sigmarsson, B.J. Wiley, One-step electrodeposition of copper on conductive 3D printed objects, Additive Manufacturing, 27 (2019) 318-326.
[137] N. Tamura, R. Ohshita, M. Fujimoto, M. Kamino, S. Fujitani, Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries, Journal of The Electrochemical Society, 150 (2003) A679-A683.
[138] H. Morimoto, S.-i. Tobishima, H. Negishi, Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries, Journal of power sources, 146 (2005) 469-472.
[139] D. Reyter, S. Rousselot, D. Mazouzi, M. Gauthier, P. Moreau, B. Lestriez, D. Guyomard, L. Roue, An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries, Journal of Power Sources, 239 (2013) 308-314.
[140] C.-L. Chen, F.-J. Chen, M.-H. Chen, M.-K. Teng, J. Chen, S.-C. Lin, New surface treatment method for copper foils to improve signal integrity of printed circuit board, 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), IEEE, 2016, pp. 584-586.
[141] S. Ikari, H. Kashiwade, T. Matsuoka, T. Hirayama, S. Ishida, K. Kato, Improvement of copper plating adhesion of PPE printed wiring board by plasma treatment, Surface and Coatings Technology, 202 (2008) 5583-5585.
[142] G.-L. Chen, H. Lin, J.-H. Lu, L. Wen, J.-Z. Zhou, Z.-H. Lin, SERS and EQCM studies on the effect of allyl thiourea on copper dissolution and deposition in aqueous sulfuric acid, Journal of applied electrochemistry, 38 (2008) 1501-1508.
[143] D. Josell, D. Wheeler, C. Witt, T.P. Moffat, Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers, Electrochemical and solid-state letters, 6 (2003) C143.
[144] J. Reid, Copper Electrodeposition: Principles and Recent Progress, Japanese journal of applied physics, 40 (2001) 2650-2657.
[145] J.A.N. Dean, Lange,s Handbook of Chemistry (15th Edition), McGraw-Hill 1999.
[146] K. Swaminathan, H.M.N.H. Irving, Infra-red absorption spectra of complexes of thiourea, Journal of inorganic and nuclear chemistry, 26 (1964) 1291-1294.
[147] M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, DOI (2006) 99.
[148] A. Brenner, Electrodeposition of Alloys: Principles and Practice: General survey, principles, and alloys of copper and silver, DOI (1963) 41.
[149] R. Feder, B.S. Berry, Seeman–Bohlin X-ray diffractometer for thin films, Journal of applied crystallography, 3 (1970) 372-379.
[150] International Centre for Diffraction Data (ICDD) PDF 01-070-3038, 2010.
[151] J. Kim, S.-K. Kim, J.-U. Bae, Investigation of copper deposition in the presence of benzotriazole, Thin solid films, 415 (2002) 101-107.
[152] K. He, N. Chen, C. Wang, L. Wei, J. Chen, Method for determining crystal grain size by x‐ray diffraction, Crystal Research and Technology, 53 (2018) 1700157.
[153] S. Strehle, S. Menzel, A. Jahn, U. Merkel, J.W. Bartha, K. Wetzig, Electromigration in electroplated Cu(Ag) alloy thin films investigated by means of single damascene Blech structures, Microelectronic engineering, 86 (2009) 2396-2403.
[154] W. Wu, S.H. Brongersma, M. Van Hove, K. Maex, Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions, Applied physics letters, 84 (2004) 2838-2840.
[155] T. Hatano, Y. Kurosawa, J. Miyake, Effect of material processing on fatigue of FPC rolled copper foil, Journal of Electronic Materials, 29 (2000) 611-616.
[156] Y.S. Choi, T. Kang, Three‐Dimensional Calculation of Current Distribution in Electrodeposition on Patterned Cathode with Auxiliary Electrode, Journal of the Electrochemical Society, 143 (1996) 480-485.
[157] Y.-J. Oh, S.-H. Chung, M.-S. Lee, Optimization of thickness uniformity in electrodeposition onto a patterned substrate, Materials transactions, 45 (2004) 3005-3010.
[158] Y. Kobayashi, Microwave characterization of copper-clad dielectric laminate substrates, IEICE transactions on electronics, 90 (2007) 2178-2184.
[159] Y.C. Lin, C.H. Chiang, C.C. Kuo, S.N. Hsu, T. Higashihara, M. Ueda, W.C. Chen, A compatible and crosslinked poly (2‐allyl‐6‐methylphenol‐co‐2, 6‐dimethylphenol)/polystyrene blend for insulating adhesive film at high frequency, Journal of Applied Polymer Science, 136 (2019) 47828.
[160] 王玉平, 姜智豪, 王銘嘉, 林盟斌, 方人瑞, 王智, 李浚瑀, 非平面天線線路與封裝模組開發之研究, 新新季刊, 44 (2016) 162-176.
[161] J.N. Reddy, Introduction to the finite element method, McGraw-Hill Education2019.
[162] S. Turek, A comparative study of time‐stepping techniques for the incompressible Navier‐Stokes equations: from fully implicit non‐linear schemes to semi‐implicit projection methods, International Journal for Numerical Methods in Fluids, 22 (1996) 987-1011.
[163] C.-W. Park, K.-Y. Park, An effect of dummy cathode on thickness uniformity in electroforming process, Results in Physics, 4 (2014) 107-112.
[164] M. De Vogelaere, V. Sommer, H. Springborn, U. Michelsen-Mohammadein, High-speed plating for electronic applications, Electrochimica Acta, 47 (2001) 109-116.
[165] T. Okubo, T. Kodera, K. Kondo, Patterned copper plating layer thickness made uniform by placement of auxiliary grid electrode about ball grid arrays, Chemical Engineering Communications, 193 (2006) 1503-1513.