簡易檢索 / 詳目顯示

研究生: 杜龍昕
Tu, Lung-Hsin
論文名稱: 利用硒分壓調控銅銦鎵硒薄膜太陽能電池之鎵梯度:製備高效率太陽能電池之關鍵因素分析
Adjusting the Gallium gradient in Cu(In,Ga)Se2 by modifying the Se partial pressure: Analyzing the key factor to fabricate the high efficiency solar cells
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 王致喨
Wang, Chih-Liang
謝東坡
Hsieh, Tung-Po
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 薄膜太陽能電池銅銦鎵硒硒分壓
外文關鍵詞: thin-film solar cells, CIGS, selenium partial pressure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅銦鎵硒薄膜太陽能電池具備可撓且高光伏特性的潛能,已經吸引眾多的關注,於此,合金後硒化是最具商業化過程,但是在純硒化過程中,容易產生鎵在背電極處累積的問題,導致嚴重的相分離以及陡峭的鎵梯度,並且元件的理想因子不佳,進而降低了元件的轉換效率。本論文著眼於此,致力改善純硒化過程中所衍生出的問題,並藉以提高元件表現效率,我們分為三個部分來解決這些問題:

    第一部分,我們提出一種有效的硒化方法,利用爐管內背景壓力的調控,進而影響硒氣氛的分壓並製造出合適的鎵梯度,研究結果發現,增加爐管背景壓力從真空到一大氣壓,能夠有效使得鎵往前移,並且得到高薄膜品質的CIGS,平均效率可提升10%以上,此部分研究詳細探討爐管背景壓力對薄膜生長的行為之影響。

    第二部分,由於在背景壓力一大氣壓下可得高品質的CIGS,但是此過高的硒分壓會導致在背電極處會產生一層超過1.5 um的MoSe2,增加元件的串聯電阻,進而降低元件的填充因子。我們提出將擴散阻擋層TiN 的引入,有效隔絕硒與鉬的反應,並成功將MoSe2 減薄至100 nm左右。

    第三部分,當引入擴散阻擋層不僅僅能夠阻擋硒分壓,然而也會抑制鈉玻璃基板來的鈉原子,我們提出一個合適的前驅層疊層設計,以彌補鈉的缺少,藉此促進元件表現效率,最後我們成功得到超過16%的元件表現效率,就我們所知,這是報導中不靠外加硫只單純硒化的CIGS世界級效率。


    CIGSe solar cell is a promising material due to their flexibility and potential to high photovoltaic properties. It has attracted lots of attention. Post annealing of precursors under chalcogen atmosphere is one of the most commertialize method to fabricate the CIGSe. However, Ga commonly segregates at the back contact during the post selenization process, which is the serious problem of phase separation. It deteriorates the fill factor and further degenerates the solar cells performance. We point out the approach to ameliorate the situation during the pure selenization and its derivate issue. We separate into three parts to solve these problems.

    In the first part, we propose an effective way for the pure selenization by modifying the background pressure to influence the Se partial pressure and further engineering the proper Ga grading profile. With the enhancement of the background pressure from vacuum to one atmosphere, Gallium tends to move toward and acquisition of the high quality CIGSe films with over 10% efficiency enhancement. In this part, we focus on the relationship between the background pressure and the properties of the films.

    In the second part, high quality CIGSe films are fabricated by high selenium partial pressure. However, there are over 1.5 um MoSe2 remains to increase the series resistance and further reduce the fill factor. We propose an approach to isolate the reaction between Selenium and Moly, in terms of introduce the ultrathin TiN diffusion barrier. MoSe2 can be reduced from over 1.5um to only 100 nm successfully.

    In the third part, a TiN diffusion barrier not only to reduce the thickness of MoSe2 but also to restrict the Sodium out-diffuse from the soda lime glass(SLG) substrate. We also propose a suitable precursor architecture to improve the solar cell devices by reducing of Sodium deficit. Finally, we successfully obtain the device performance with over 16.0% efficiency. To our understanding, it is the highest CIGSe solar cell device via post-annealing treatments without any sulfur incorporation.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 序論 1 1.1研究緣起 1 1.2光伏元件 1 第二章 文獻回顧與探討 4 2.1 太陽能光伏元件物理 4 2.1.1開路電壓(OPEN CIRCUIT VOLTAGE) 6 2.1.3填充因子(FILL FACTOR) 9 2.1.4串聯電阻(SERIES RESISTANCE)和並聯電阻(SHUNT RESISTANCE) 9 2.1.5光電轉換效率(EFFICIENCY) 10 2.16量子轉換效率(QUANTUM EFFICIENCY) 10 2.2 CIGS元件結構 11 2.2.1基板 11 2.2.2鉬背電極 12 2.2.3 CIGS吸收層 13 2.2.4緩衝層 14 2.2.5窗口層 14 2.2.6鋁上電極 14 2.3 CIGS薄膜太陽能電池發展歷史與進程 15 2.3.1 三階段共蒸鍍法 15 2.3.2合金後硒化 16 2.3.3 鹼金屬的摻雜 18 2.3.4 背電極探討 19 2.4 CIGS 產業現況與未來展望(模組與實驗室小面積效率差異) 23 第三章 材料分析與方法 25 3.1 X光繞射分析( X-RAY DIFFRACTION, XRD) 25 3.2 X光螢光分析( X-RAY FLUORESCENCE,XRF) 25 3.3 冷場發射掃描式電子顯微鏡(SCANNING ELECTRON MICROSCOPE, SEM) 27 3.4 電子能譜儀( X-RAY PHOTOELECTRON SPECTROSCOPY, XPS) 28 3.5 穿透式電子顯微鏡(TRANSMISSION ELECTRON MICROSCOPE) 29 3.6二次離子質譜儀(SECONDARY ION MASS SPECTROSCOPY, SIMS) 29 3.7 光致螢光光譜(PHOTOLUMINESCENCE AND TIME-RESOLVED PHOTOLUMINESCENCE) 30 3.8原子力學顯微鏡(ATOMIC FORCE MICROSCOPY, AFM) 31 3.9電性量測 32 3.10濺鍍製程 32 第四章 結果與討論 33 4.1 純硒化製成簡介 33 4.2實驗架構及流程 40 4.3 結果與討論 42 4.3.1 SEM 橫切面與表面分析 42 4.3.2 XRD 分析 45 4.3.3 XPS 縱深分布之成分分析 48 4.3.4 元件表現效率 51 4.3.5 探討生成過厚的MOSE2之因素 53 4.3.6 TIN 擴散阻擋層的引入 55 4.3.7 鈉的缺乏 59 第五章 結論與未來展望 64 第六章 參考文獻 65

    1. Yamaguchi, M., et al., Analysis for efficiency potential of high-efficiency and next-generation solar cells. Progress in Photovoltaics: Research and Applications, 2017.
    2. Hegedus Steven, S. and N. Shafarman William, Thin‐film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 155-176.
    3. Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%. Available from: http://www.solar-frontier.com/eng/news/2017/1220_press.html.
    4. Yang, S., et al. Achievement of 16.5% total area efficiency on 1.09m2 CIGS modules in TSMC solar production line. in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). 2015.
    5. Scheer, R. and H.W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. 2011.
    6. Rau, U. and H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 1999. 69(2): p. 131-147.
    7. Schmidt, S.S., et al., Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se-2 solar cell absorber layers using elemental selenium vapor. Progress in Photovoltaics, 2017. 25(5): p. 341-357.
    8. Avancini, E., et al., Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2017. 25(3): p. 233-241.
    9. Cai, C.-H., et al., Interplay between potassium doping and bandgap profiling in selenized Cu(In,Ga)Se 2 solar cells: A functional CuGa:KF surface precursor layer. Nano Energy, 2018. 47: p. 393-400.
    10. Feurer, T., et al., Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications. Progress in Photovoltaics: Research and Applications, 2017. 25(7): p. 645-667.
    11. Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 453-466.
    12. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science, 2017. 10(6): p. 1306-1319.
    13. Dhere, N.G., Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells, 2006. 90(15): p. 2181-2190.
    14. Chirila, A., et al., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater, 2013. 12(12): p. 1107-11.
    15. Lin, T.-Y., et al., Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se 2 solar cells with controlled preferred orientation. Nano Energy, 2017. 41: p. 697-705.
    16. Salomé, P.M.P., et al., The effect of Mo back contact ageing on Cu(In,Ga)Se2thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2014. 22(1): p. 83-89.
    17. Ho, W.H., et al., Room-Temperature Chemical Solution Treatment for Flexible ZnS(O,OH)/Cu(In,Ga)Se2 Solar Cell: Improvements in Interface Properties and Metastability. ACS Appl Mater Interfaces, 2016. 8(10): p. 6709-17.
    18. Shay, J.L., S. Wagner, and H.M. Kasper, Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 1975. 27(2): p. 89-90.
    19. Gabor, A., et al., High-efficiency CuInXGa1-XSe2 solar cells made from (InX ,Ga1-X)2Se3 precursor films. Vol. 65. 1994. 198-200.
    20. Romeo, A., et al., Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 93-111.
    21. Chu, V.K.K.V.C.K.P., Process of forming a compound semiconductive material. 1984: US.
    22. Kobayashi, T., et al., Impacts of surface sulfurization on Cu(In1−x,Gax)Se2thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(10): p. 1367-1374.
    23. Kim, K., et al., Three-step H2Se/Ar/H2S reaction of Cu-In-Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S)2 thin films. Journal of Applied Physics, 2012. 111(8): p. 083710.
    24. Moon, D.G., et al., Cu(In,Ga)Se2 thin films without Ga segregation prepared by the single-step selenization of sputter deposited Cu-In-Ga-Se precursor layers. Energy & Environmental Science, 2012. 5(12): p. 9914.
    25. Li, G.M., et al., Influence of Thermal Cracking Selenium on The Open-circuit Voltage of CIGS Solar Cells. Vol. 36. 2015. 1289-1293.
    26. Wu, T.-T., et al., Toward high efficiency and panel size 30×40cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature. Nano Energy, 2014. 10: p. 28-36.
    27. Kronik, L., D. Cahen, and W. Schock Hans, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1999. 10(1): p. 31-36.
    28. Yuan, Z.-K., et al., Na-Diffusion Enhanced p-type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors. Advanced Energy Materials, 2016. 6(24): p. 1601191.
    29. Hsu, C.-H., et al., Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2 Absorbers without Postselenization by Post-Treatment of Alkali Metals. Advanced Energy Materials, 2017. 7(13): p. 1602571.
    30. Colombara, D., et al., Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers. Nat Commun, 2018. 9(1): p. 826.
    31. Handick, E., et al., Formation of a K-In-Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers. ACS Appl Mater Interfaces, 2017. 9(4): p. 3581-3589.
    32. Handick, E., et al., Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se(2) Surfaces--Reason for Performance Leap? ACS Appl Mater Interfaces, 2015. 7(49): p. 27414-20.
    33. Lepetit, T., et al., Coevaporated KInSe2: A Fast Alternative to KF Postdeposition Treatment in High-Efficiency Cu(In,Ga)Se2Thin Film Solar Cells. IEEE Journal of Photovoltaics, 2016. 6(5): p. 1316-1320.
    34. Reinhard, P., et al., Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells. Chemistry of Materials, 2015. 27(16): p. 5755-5764.
    35. Hauschild, D., et al., Impact of a RbF Postdeposition Treatment on the Electronic Structure of the CdS/Cu(In,Ga)Se2 Heterojunction in High-Efficiency Thin-Film Solar Cells. ACS Energy Letters, 2017. 2(10): p. 2383-2387.
    36. Jackson, P., et al., Effects of heavy alkali elements in Cu(In,Ga)Se2solar cells with efficiencies up to 22.6%. physica status solidi (RRL) - Rapid Research Letters, 2016. 10(8): p. 583-586.
    37. Malitckaya, M., et al., Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber. The Journal of Physical Chemistry C, 2017. 121(29): p. 15516-15528.
    38. Umemoto, K., et al. Evaluation of the CIGS precursor layer deposited by CuGa-NaF sputtering target and its effect for Na distribution. in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). 2015.
    39. Park, J.H., et al., Homogeneous Na incorporation for industrial-scale application of Cu(In,Ga)(Se,S)2 solar cells. Progress in Photovoltaics: Research and Applications, 2018. 26(2): p. 112-126.
    40. Zhang, X., M. Kobayashi, and A. Yamada, Comparison of Ag(In,Ga)Se2/Mo and Cu(In,Ga)Se2/Mo Interfaces in Solar Cells. ACS Appl Mater Interfaces, 2017. 9(19): p. 16215-16220.
    41. Mirhosseini, H., et al., Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations. Thin Solid Films, 2016. 606: p. 143-147.
    42. Kato, T., et al., Characterization of the Back Contact of CIGS Solar Cell as the Origin of "Rollover" Effect. 2016.
    43. Bermudez, V. and A. Perez-Rodriguez, Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nature Energy, 2018. 3(6): p. 466-475.
    44. 17.52 % EFFICIENCY – NEW WORLD RECORD FOR SOLIBRO´S CIGS THIN-FILM PANELS. 2018; Available from: http://solibro-solar.com/en/news-downloads/news/.
    45. Shafarman, W.N., R. Klenk, and B.E. McCandless, Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap. Journal of Applied Physics, 1996. 79(9): p. 7324-7328.
    46. Song, Y.J., et al., Two-step selenization using nozzle free Se shower for Cu(In,Ga)Se2 thin film solar cell. Progress in Photovoltaics: Research and Applications, 2018. 26(3): p. 223-233.
    47. Kim, B. and B.K. Min, Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process. Sustainable Energy & Fuels, 2018.
    48. Kim, G.Y., et al., High photo-conversion efficiency in double-graded Cu(In,Ga)(S,Se)2thin film solar cells with two-step sulfurization post-treatment. Progress in Photovoltaics: Research and Applications, 2017. 25(2): p. 139-148.
    49. Han, J.H., et al., Actual partial pressure of Se vapor in a closed selenization system: quantitative estimation and impact on solution-processed chalcogenide thin-film solar cells. Journal of Materials Chemistry A, 2016. 4(17): p. 6319-6331.
    50. Han, J., et al., Investigation of copper indium gallium selenide material growth by selenization of metallic precursors. Journal of Crystal Growth, 2013. 382: p. 56-60.
    51. Mainz, R., et al., Time-resolved investigation of Cu(In,Ga)Se2growth and Ga gradient formation during fast selenisation of metallic precursors. Progress in Photovoltaics: Research and Applications, 2015. 23(9): p. 1131-1143.
    52. Witte, W., et al., Gallium gradients in Cu(In,Ga)Se2thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(6): p. 717-733.
    53. Jackson, P., et al., Properties of Cu(In,Ga)Se2solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Research Letters, 2015. 9(1): p. 28-31.
    54. Schmidt, S., et al., MoSe2 formation during fabrication of Cu(In, Ga)Se2 solar cell absorbers by using stacked elemental layer precursor and selenization at high temperatures. 2013. 2528-2533.
    55. Zhu, X., et al., Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells. Solar Energy Materials and Solar Cells, 2012. 101: p. 57-61.
    56. Englund, S., et al., Characterization of TiN back contact interlayers with varied thickness for Cu2ZnSn(S,Se)4 thin film solar cells. Thin Solid Films, 2017. 639: p. 91-97.
    57. Shin, B., et al., Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Applied Physics Letters, 2012. 101(5): p. 053903.
    58. Yoon, J.-H., et al., Electrical properties of CIGS/Mo junctions as a function of MoSe2orientation and Na doping. Progress in Photovoltaics: Research and Applications, 2014. 22(1): p. 90-96.

    QR CODE