簡易檢索 / 詳目顯示

研究生: 陳奎君
Kuei-Jyun Chen
論文名稱: 以遮罩法製造超短奈米碳管電晶體與其傳輸性質之研究
Transport Properties in Ultrashort Carbon Nanotubes Fabricated by Shadow Mask Method
指導教授: 邱博文 博士
Prof. Po-Wen Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 奈米碳管奈米縫奈米狹縫遮罩法奈米碳管電晶體
外文關鍵詞: CNTs, carbon nanotube, nanogap, CNT-FET
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電晶體體積持續微縮的趨勢下, 以矽晶圓為基礎的製程, 面對許多物理性與技術上的限制, 造成繼續微縮的困難。因此人們嘗試使用由下而上的構裝方式, 以各種奈米級分子取代矽材料, 來製作各種的奈米級電晶體。由於奈米碳管各項優異的特性, 使其相當有潛力成為下一世代電晶體的主角, 不過真的要能取代現今矽製程的電晶體, 必需製作出通道長度小於30 nm 以下的奈米碳管電晶體, 並了解在極短長度下, 奈米碳管的傳輸性質。
    目前雖然有相當多關於奈米碳管電晶體的各項研究, 但由於製作極小間距電極的困難, 以往研究的奈米碳管電晶體通道長度皆大於10 nm 以上, 我們預期奈米碳管電晶體通道長度在10 nm 以下時, 因載子平均自由路徑遠大於通道長度及半導體性奈米碳管與兩端金屬接觸的蕭特基位障有可能重疊,將會產生與以往不同的電學特性。而實際上奈米碳管在極短的長度之下, 其傳輸機制到底為何呢? 這有待我們做更進一步的探討研究。
    本論文研究的方向, 在先能實際製作出10 nm 以下的超短奈米碳管電晶體, 再量測電晶體的各種電流曲線, 以此做為建立超短奈米碳管電晶體傳輸機制的依據。在分析目前幾種主要製造奈米狹縫的技術後, 我們採用遮罩法來製造超短奈米碳管電晶體所需要的奈米狹縫電極, 利用五氧化二釩奈米纖維及單壁奈米碳管兩種不同特性的奈米線做為遮罩, 來製作出不同寬窄和性質的奈米狹縫單元。在實際的製作上, 我們設計了可一次大量製作出奈米狹縫單元的流程, 並且發展出可定向一維奈米線的技巧。大量製作出奈米狹縫單元後, 使用原子力顯微鏡及掃瞄式電子顯微鏡分別對其做結構性的掃瞄分析, 證明了我們成功地製作出奈米狹縫單元, 不但如此, 分析數據顯示出其擁有極高的良率。接著將奈米狹縫單元, 連接金屬導線製成超短奈米碳管電晶體, 在變溫下量測了14組以五氧化二釩奈米纖維遮罩法及13組以單壁奈米碳管遮罩法所製作的超短奈米碳管電晶體, 並分析所量測到的電流曲線, 電流曲線顯示出其有場調變的效應, 但必需先消除額外的大電阻, 方能探討更深入的傳輸機制。
    最後對後續之研究工作做些建議且分析往後需注意改善的地方, 並展望我們製作奈米狹縫技術將來可能的運用。


    第一章 緒論 第二章 奈米級元件及技術 第三章 元件製備 第四章 奈米狹縫單元之結構分析 第五章 電性量測結果與討論 第六章 結論與展望

    [1] 成會明編著張勁燕校訂, 奈米碳管. 五南出版社出版, 2004.
    [2] P. J. F. Harris, Carbon Nanotubes and Related Structure. Cambridge University
    Press: New York, 1999.
    [3] R. S.Wagner and C. J. Doherty, “Controlled vapor-liquid-solid growth of silicon
    crystals,” J. Electrochem. Soc, vol. 113, p. 1300, 1966.
    [4] J.Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier,
    “Root-growth mechanism for single-wall carbon nanotubes,” Phy. Rev.
    Lett, vol. 87, p. 275504, 2001.
    [5] T. Baird, J. Fryer, and B. Grant, “Structure of fibrous carbon,” Nature, vol.
    233, p. 329, 1971.
    [6] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and
    H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission
    properties,” Science, vol. 283, p. 512, 1999.
    [7] K.-T. Lau and D. Hu, “The revolutionary creation of new advanced materialscarbon
    nanotube composites,” Composites : Part B, vol. 32, p. 263, 2002.
    [8] T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, “Catalytic growth
    of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett., vol. 243,
    p. 49, 1995.
    [9] L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X.
    Qian, , and S. S. Xie, “Growth of straight nanotubes with a cobalt-nickel catalyst
    by chemical vapor deposition,” Appl. Phys. Lett., vol. 74, p. 644, 1999.
    [10] S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C.
    Eklund, “Effect of the growth temperature on the diameter distribution and
    chirality of single-wall carbon nanotubes,” Phys. Rev. Lett., vol. 80, p. 3779,
    1998.
    [11] B. K. Pradhan, T. Toba, T. Kyotani, and A. Tomita, “Inclusion of crystalline
    iron oxide nanoparticles in uniform carbon nanotubes prepared by a template
    carbonization method,” Chem. Mater., vol. 10, p. 2510, 1998.
    [12] S. Iijima, “Helical microtubles of graphitic carbon,” Nature, vol. 354, p. 56,
    1991.
    [13] C. Journet, W. Maser, P. Bernier, A. Loiseau, M. delaChapelle, S. Lefrant,
    P. Deniard, R. Lee, and J. Fischer, “Large-scale production of single-walled
    carbon nanotubes by the electric-arc technique,” Nature, vol. 388, p. 756, 1997.
    [14] T. Henning and F. Salama, “Carbon in the universe,” Scienc, vol. 282, p. 2204,
    1998.
    [15] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes–the
    route toward applications,” Science, vol. 297, p. 787, 2002.
    [16] P. W. Chiu, Introduction to Nanoelectronic Devices, 2005, ch. 5-1, p. 17.
    [17] M. S. Dresselhaus and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes.
    Academic Press: San Diego, 1996.
    [18] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,”
    Carbon, vol. 33, p. 883, 1995.
    [19] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
    Nanotubes. Imperial College Press, London, 1998.
    [20] S. Maruyama. Kataura plot and 1D electronic DOS of carbon nanotubes, 2002.
    http://reizei.t.u-tokyo.ac.jp/ maruyama/kataura/kataura.html.
    [21] A. P., “Carbon nanotube electronics,” Chem. Phys., vol. 281, p. 429, 2002.
    [22] N. Hamada, S. ichi Sawada, and A. Oshiyama, “New one-dimensional conductors:
    Graphitic microtubules,” Phys. Rev. Lett., vol. 68, p. 1579, 1992.
    [23] Saito, G. Dresselhaus, and M. Dresselhaus, “Trigonal warping effect of carbon
    nanotubes,” Phys. Rev. B, vol. 61, pp. 2981–2990, 2000.
    [24] P. L. McEuen, M. Fuhrer, and H. Park, “Single-walled carbon nanotube electronics,”
    IEEE Transactions on Nanotechnology, vol. 1, p. 78, 2002.
    [25] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and
    multi-wall carbon nanotube field effect transistors,” Appl. Phy. Lett., vol. 73,
    p. 2447, 1998.
    [26] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor
    based on a single carbon nanotube,” Nature, vol. 393, p. 49, 1998.
    [27] V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, “Carbon nanotube interand
    intramolecular logic gates,” Nano Lett., vol. 1, p. 453, 2001.
    [28] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris,
    “Carbon nanotubes as schottky barrier transistors,” Phys. Rev. Lett., vol. 89,
    p. 106801, 2002.
    [29] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff,
    and P. Avouris, “Ambipolar electrical transport in semiconducting single-wall
    carbon nanotubes,” Phys. Rev. Lett., vol. 87, p. 256805, 2001.
    [30] M. R. Falvo, G. Clary, R. M. T. II, V. Chi, F. P. B. Jr, S. Washburn, and
    R. Superfine, “Bending and bucking of carbon nanotubes under large strain,”
    Nature, vol. 389, p. 582, 1997.
    [31] E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity,
    strength and toughness of nanorods and nanotubes,” Science, vol. 227, p.
    1971, 1997.
    [32] R. Service, “Superstrong nanotubes show they are smart, too,” Science, vol.
    281, p. 940, 1998.
    [33] S. Li, Z. Yu, S.-F. Yen, W. C. Tang, and P. J. Burke, “Carbon nanotube
    transistor operation at 2.6 ghz,” Nano Lett., vol. 4, p. 753, 2004.
    [34] L. A. W. Robinson, S.-B. Lee, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga,
    W. I. Milne, D. A. Williams, D. G. Hasko, and H. Ahmed, “Fabrication
    of self-aligned side gates to carbon nanotubes,” NANOTECHNOLOGY,
    vol. 14, pp. 290–293, 2003.
    [35] R. M. V. D. S. J. Wind, J. Appenzeller and P. Avouris, “Vertical scaling of
    carbon nanotube field effect transistors using top gate electrodes , vol. 80 no.
    20, 2002,” Appl. Phys. Lett., vol. 80, pp. 3817–3819, 2002.
    [36] P. W. Chiu, Introduction to Nanoelectronic Devices, 2005, ch. 5-2, p. 6.
    [37] H. W. C. P. abd Tijs Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon
    nanotbe single-electron transistors at room temperature,” Science, vol. 293,
    p. 76, 2001.
    [38] K.Ishibashi, D.Tsuya, M.Suzuki, and Y.Aoyagi, “Fabrication of a single electron
    inverter in multiwall carbon nanotubes,” Appl. Phys. Lett., vol. 82, p. 3307,
    2003.
    [39] N. Lee, D. Chung, I. Han, J. Kang, Y. Choi, H. Kim, S. Park, Y. Jin, W. Yi,
    M. Yun, J. Jung, C. Lee, S. J. Y.J. H and, C. Lee, and J. Kim, “Application
    of carbon nanotubes to field emission displays,” Diamond and Related Mater,
    vol. 10, p. 265, 2001.
    [40] http://ipt.arc.nasa.gov/.
    [41] K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, and J. Michl, “Simple
    fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography,”
    Appl. Phys. Lett., vol. 80, p. 865, 2002.
    [42] Images from van Wees group, Netherlands.
    [43] C. Zhou, C. J. Muller, M. R. Deshpande, J. W. Sleight, and M. A. Reed, “Microfabrication
    of a mechanically controllable break junction in silicon,” Appl.
    Phys. Lett., vol. 67, p. 1160, 1995.
    [44] S. Boussaad and N. J. Tao, “Atom-size gaps and contacts between electrodes
    fabricated with a self-terminated electrochemical method,” Appl. Phys. Lett.,
    vol. 80, p. 2398, 2002.
    [45] S. I. Khondaker and Z. Yao, “Fabrication of nanometer-spaced electrodes using
    gold nanoparticles,” Appl. Phys. Lett., vol. 81, p. 4613, 2002.
    [46] A. Kanda, M.Wada, Y. Hamamoto, and Y. Ootuka, “Simple and controlled fabrication
    of nanoscale gaps using double-angle evaporation,” Physica E, vol. 29,
    p. 707, 2005.
    [47] J. Lefebvre, M. Radosavljevic, and A. T. Johnson, “Fabrication of nanometer
    size gaps in a metallic wire,” Appl. Phys. Lett., vol. 76, p. 3828, 2000.
    [48] A. Javey, P. Qi, Q. Wang, and H. Dai, “Ten- to 50-nm-long quasi-ballistic
    carbon nanotube devices obtained without complex lithography,” Proc. Nat.
    Acad. Sci., vol. 101, p. 13408, 2004.
    [49] G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann,
    L. Zhang, and H. Dai, “Selective etching of metallic carbon nanotubes by gasphase
    reaction,” Science, vol. 314, p. 974, 2006.
    [50] R. Krupke, F. Hennrich, H. L¨ohneysen, and M. Kappes, “Separation of metallic
    from semiconducting single-walled carbon nanotubes,” Science, vol. 301, p. 344,
    2003.
    [51] X. Liu, C. Lee, S. Han, C. Li, and C. Zhou, Carbon Nanotubes: Synthesis,
    Devices, and Integrated Systems. American Scientific Publishers, 2003.
    [52] G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse, G. T. Kim, S. Roth,
    M. Kozlov, E. Muˆnoz, and R. H. Baughman, “V2o5 nanofibre sheet actuators,”
    Nature Materials, vol. 2, p. 316, 2003.
    [53] A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon,
    “Alignment and sensitive detection of dna by a moving interface,” Science,
    vol. 265, p. 2096, 1994.
    [54] G.Binning, C.F.Quate, and C.Rohrer, “Atomic force microscope,” Phys. Rev.
    Lett., vol. 56, p. 930, 1986.
    [55] P. Russell, D. Batchelor, and J. Thornton, “Sem and afm: Complementary
    techniques for high resolution surface investigations,” Veeco Instruments, Inc.,
    Tech. Rep., 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE