研究生: |
傅晟翔 Fu, Chung-Siaung |
---|---|
論文名稱: |
新型抗蛇毒血清製備及效價分析 Manufacture and titer assay of New-type antivenom |
指導教授: |
蘇士哲
Sue, Shih-Che |
口試委員: |
吳文桂
簡昆鎰 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 抗蛇毒血清 、粗蛇毒 、心臟毒素 、神經毒素 、馬血清 |
外文關鍵詞: | Antivenom, Crude venom, Cardiotoxin, Neurotoxin, Horse serum |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在2009年世界衛生組織已把蛇傷歸類於被忽視的熱帶疾病,世界各地每年將近540萬起蛇咬傷事件,並造成8萬至14萬的死亡人數,更有死亡數三倍的人們飽受截肢之苦,面臨永久性殘疾,因此具備有效用的抗蛇毒血清是必要的,在台灣每年約有1000筆蛇傷案例,其中眼鏡蛇因數量較多且與人們生活環境重疊,為常見咬傷案例的蛇種。
台灣眼鏡蛇毒主要毒性成分為心臟毒素、神經毒素及磷酸水解酶A2,先前有研究指出,現今市面上利用粗蛇毒做抗原,進行免疫所生產出的抗蛇毒血清,主要認含量少且較無毒性的高分子量蛋白,而相較之下,毒性較強蛋白部分,反而血清辨認能力較弱。同時研究指出,若單純利用心臟毒素、神經毒素及磷酸水解酶A2做抗原,生產出的血清會大幅改善此問題,並有效提升血清的效價。且若抗原中添加Scrambled CTXA3製造出的血清,會增加認心臟毒素的種類,因此我們團隊利用主成分為心臟毒素、神經毒素及磷酸水解酶A2的免疫原,生產出對粗蛇毒有更高中和效價的增效型血清及近一步在免疫成分加了Scrambled CTXA3的廣效型血清,在對各型的血清利用HPLC抗蛇毒血清分析技術、酵素免疫吸附法及小鼠實驗來進一步分析中和活性,並比較這些技術的優點。最後,透過ELISA和NMR滴定實驗研究神經毒素的抗原決定位。
The World Health Organization already classified snake injuries as a neglected tropical disease in 2009. Near 5.4 million snake bites occur every year in the world, causing 80,000 to 140,000 deaths and more than three times of people suffering from amputation and permanent disability. Thus, to prepare an effective antivenom is essential. There are about 1,000 cases of snake injuries each year in Taiwan. Among them, the injuries caused from Taiwan cobra is relatively common because the higher population and living area overlapping with human living environment. The main toxic components of cobra venom are cardiotoxin, neurotoxin and phospholipase A2. Literatures have reported that the current antivenom on the market mainly recognizes the high-molecular proteins in cobra venom, which is less toxic and with very low ratio. In contrast, the toxic part is less recognized. Here, we perform a study to manufacture new-type antivenom by only immunizing cardiotoxin, neurotoxin and phospholipase A2. The strategy improves the yield of antivenom production and meanwhile, effectively increases the serum titer. We also test another procedure by adding scrambled cardiotoxin A3 into the antigen to enhance the ability of serum to recognize all types of cardiotoxins. The different antivenom are produced by immunizing horses. The antigen containing only cardiotoxin, neurotoxin and phosphohydrolase A2 creates synergistic effect in neutralizing crude venom. The antigen further including scrambled CTXA3 therefore demonstrate broad effect. The serum of each preparation is analyzed by HPLC antivenom analysis method, ELISA and animal test to define the neutralization activity. We compare the advantages of the individual methods. In final, the epitope of neurotoxin is explored by ELISA and NMR titration experiments.
參考文獻
1.Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., et al. (2008). The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS medicine, 5(11), e218.
2.Lee, C.-Y., & Lee, S. (1979). Cardiovascular effects of snake venoms. In Snake venoms (pp. 547-590): Springer.
3.Matsui, T., Fujimura, Y., & Titani, K. (2000). Snake venom proteases affecting hemostasis and thrombosis. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 146-156.
4.Daltry, J. C., Wüster, W., & Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537.
5.Huang, H.-W., Liu, B.-S., Chien, K.-Y., Chiang, L.-C., Huang, S.-Y., Sung, W.-C., et al. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. Journal of proteomics, 128, 92-104.
6.Chang, C. (1979). The action of snake venoms on nerve and muscle. In Snake venoms (pp. 309-376): Springer.
7.Wu, W.-G. (1997). Diversity of cobra cardiotoxin. Journal of Toxicology: Toxin Reviews, 16(3), 115-134.
8.Harvey, A. L. (1991). Cardiotoxins from cobra venoms. In Handbook of natural toxins (pp. 85-106): Routledge.
9.Jiang, Y., Li, Y., Lee, W., Xu, X., Zhang, Y., Zhao, R., et al. (2011). Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC genomics, 12(1), 1.
10.Ranawaka, U. K., Lalloo, D. G., & de Silva, H. J. (2013). Neurotoxicity in snakebite—the limits of our knowledge. PLoS Neglected Tropical Diseases, 7(10), e2302.
11.Lou, X., Tu, X., Pan, G., Xu, C., Fan, R., Lu, W., et al. (2003). Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain α-neurotoxin from Naja atra venom. Acta Crystallographica Section D: Biological Crystallography, 59(6), 1038-1042.
12.Nirthanan, S., & Gwee, M. C. (2004). Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of pharmacological sciences, 94(1), 1-17.
13.Tsetlin, V. (1999). Snake venom α‐neurotoxins and other ‘three‐finger’proteins. European Journal of Biochemistry, 264(2), 281-286.
14.Chang, C., & Lee, C. (1966). Electrophysiological study of neuromuscular blocking action of cobra neurotoxin. British journal of pharmacology and chemotherapy, 28(2), 172-181.
15.Dufton, M., & Hider, R. (1983). Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. Critical Reviews in Biochemistry, 14(2), 113-171.
16.Rungsiwongse, J., & Ratanabanangkoon, K. (1991). Development of an ELISA to assess the potency of horse therapeutic antivenom against Thai cobra venom. Journal of immunological methods, 136(1), 37-43.
17.Rees, B., Samama, J., Thierry, J., Gilibert, M., Fischer, J., Schweitz, H., et al. (1987). Crystal structure of a snake venom cardiotoxin. Proceedings of the National Academy of Sciences, 84(10), 3132-3136.
18.Sue, S.-C., Jarrell, H. C., Brisson, J.-R., & Wu, W.-g. (2001). Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry, 40(43), 12782-12794.
19.Gilquin, B., Roumestand, C., Zinn‐Justin, S., Ménez, A., & Toma, F. (1993). Refined three‐dimensional solution structure of a snake cardiotoxin: Analysis of the side‐chain organization suggests the existence of a possible phospholipid binding site. Biopolymers: Original Research on Biomolecules, 33(11), 1659-1675.
20.Lin, S.-R., Chang, K.-L., & Chang, C.-C. (1993). Chemical modification of amino groups in cardiotoxin III from Taiwan cobra Naja naja atra) venom. Biochemistry and molecular biology international, 31(1), 175-184.
21.Kaneda, N., Sasaki, T., & Hayashi, K. (1977). Primary structures of cardiotoxin analogues II and IV from the venom of Naja naja atra. Biochimica et Biophysica Acta (BBA)-Protein Structure, 491(1), 53-66.
22.Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A. A., Rule, G. S., & Wu, W.-g. (1994). Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of Biological Chemistry, 269(20), 14473-14483.
23.Yoshida, B. M., Patel, N., & Badrinath, P. (1967). Isolation and properties of a cobravenom factor selectively cytotoxic to yoshida sarcoma cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 136(3), 508-520.
24.Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., & Arseniev, A. S. (2003). Interaction of the P‐type cardiotoxin with phospholipid membranes. European journal of biochemistry, 270(9), 2038-2046.
25.Bougis, P., Rochat, H., Pieroni, G., & Verger, R. (1981). Penetration of phospholipid monolayers by cardiotoxins. Biochemistry, 20(17), 4915-4920.
26.Forouhar, F., Huang, W.-N., Liu, J.-H., Chien, K.-Y., Wu, W.-g., & Hsiao, C.-D. (2003). Structural basis of membrane-induced cardiotoxin A3 oligomerization. Journal of Biological Chemistry, 278(24), 21980-21988.
27.Teng, C.-M., Jy, W., & Ouyang, C. (1984). Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon, 22(3), 463-470.
28.Möllmann, U., Gutsche, W., Maltz, L., & Ovadia, M. (1997). Activity of cytotoxin P4 from the venom of the cobra snake Naja nigricollis on gram-positive bacteria and eukaryotic cell lines. Arzneimittel-Forschung, 47(5), 671-673.
29.Ho, C.-L., Lee, C., & Lu, H. (1975). Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon, 13(6), 437-446.
30.Ownby, C. L., Fletcher, J. E., & Colberg, T. R. (1993). Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon, 31(6), 697-709.
31.Zhang, B., Li, F., Chen, Z., Shrivastava, I. H., Gasanoff, E. S., & Dagda, R. K. (2019). Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins, 11(3), 152.
32.Jiang, C., Xiong, W., Lu, B.-Y., Gonda, M. A., & Chang, J.-Y. (2010). Synthesis and immune response of non-native isomers of vascular endothelial growth factor. Biochemistry, 49(31), 6550-6556.
33.孙明忠, 丁兰, 赵大庆, & 倪嘉缵. (1999). 长白山白眉蝮蛇蛇毒磷脂酶 A2 的分离和初步表征. 生物化学与生物物理学报, 31(1), 104.
34.Hseu, Y., & WU, W. (1995). INTERACTION BETWEEN CARDIOTOXINS AND PHOSPHOLIPASE-A2 IN MEMBRANES AS REVEALED BY THE SYNERGISTIC EFFECT OF THEIR IN-VITRO ACTIVITY. Paper presented at the FASEB JOURNAL.
35.Dart, R. C. (2004). Medical toxicology: Lippincott Williams & Wilkins.
36.Gad, S. C. (2007). Handbook of pharmaceutical biotechnology (Vol. 2): John Wiley & Sons.
37.Del Brutto, O. H. (2013). Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. In Handbook of clinical neurology (Vol. 114, pp. 349-368): Elsevier.
38.謝文欽,陳昭宏,許靜侖,王瓊儀,劉健信 (2017) 不同飯匙倩蛇毒抗原免疫劑
量誘導馬匹產生中和抗體的影響評估 衛生福利部疾病管制署
39.Stuart, M. C., Kouimtzi, M., & Hill, S. R. (2009). WHO model formulary 2008: World
Health Organization.
40.Herrera, M., Sánchez, M., Machado, A., Ramírez, N., Vargas, M., Villalta, M., et al. (2017). Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model. Biomedicine & Pharmacotherapy, 90, 740-743
41.Baum, R., Bronner, J., Akpunonu, P., Plott, J., Bailey, A., & Keyler, D. (2019). Crotalus durissus terrificus (viperidae; crotalinae) envenomation: Respiratory failure and treatment with antivipmyn TRI® antivenom. Toxicon.
42.Kitchens, C. S., & Eskin, T. A. (2008). Fatality in a case of envenomation byCrotalus adamanteus initially successfully treated with polyvalent ovine antivenom followed by recurrence of defibrinogenation syndrome. Journal of Medical Toxicology, 4(3), 180-183.
43.Warrell, D. A. (2010). Snake bite. The Lancet, 375(9708), 77-88.
44.Kikuchi, H. (1987). Study on the effectiveness of the Yamakagashi (Rhabdophis Tigrinus). The Snake, 19, 95-98.
45.Morokuma, K., Kobori, N., Fukuda, T., Uchida, T., Sakai, A., Toriba, M., et al. (2011). Experimental manufacture of equine antivenom against yamakagashi (Rhabdophis tigrinus). Jpn J Infect Dis, 64(5), 397-402.
46.Yamamoto, S., Kawabata, N., Tamura, A., Urakami, H., Ohashi, N., Murata, M., et al. (1986). ————‐Immunological Properties of Rickettsia tsutsugamushi Kawasaki Strain, Isolated from a Patient in Kyushu. Microbiology and immunology, 30(7), 611-620.
47.Pepin, S., Lutsch, C., Grandgeorge, M., & Scherrmann, J.-M. (1995). Snake F (ab′) 2 antivenom from hyperimmunized horse: pharmacokinetics following intravenous and intramuscular administrations in rabbits. Pharmaceutical research, 12(10), 1470-1473.
48.Zhang, J. (2011). The structural stability of wild-type horse prion protein. Journal of Biomolecular Structure and Dynamics, 29(2), 369-377.
49.林韋萱 (2012) 救命任務抗蛇毒血清的旅程
50.Shan, L.-L., Gao, J.-F., Zhang, Y.-X., Shen, S.-S., He, Y., Wang, J., et al. (2016).
Proteomic characterization and comparison of venoms from two elapid
snakes (Bungarus multicinctus and Naja atra) from China. Journal of
proteomics, 138, 83-94.
51.Pla, D., Gutiérrez, J. M., & Calvete, J. J. (2012). Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon, 60(4), 688-699.
52.Mordvintsev, D. Y., Polyak, Y. L., Levtsova, O. V., Tourleigh, Y. V., Kasheverov, I., Shaitan, K. V., et al. (2005). A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Computational biology and chemistry, 29(6), 398-411.
53.Liu, B.-S., Wu, W.-G., Lin, M.-H., Li, C.-H., Jiang, B.-R., Wu, S.-C., et al. (2017). Identification of immunoreactive peptides of toxins to simultaneously assess the neutralization potency of antivenoms against neurotoxicity and cytotoxicity of naja atra venom. Toxins, 10(1), 10.
54.Engmark, M., Jespersen, M. C., Lomonte, B., Lund, O., & Laustsen, A. H. (2017). High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon, 138, 151-158.