簡易檢索 / 詳目顯示

研究生: 林琦祐
Lin, Chi-Yu
論文名稱: 用動態排程來改進低密度奇偶檢查碼系統的性能
Performance improvement of LDPC coded systems by dynamic scheduling and selective mapping
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 59
中文關鍵詞: 動態排程低密度奇偶檢查碼
外文關鍵詞: LDPC, dynamic scheduling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著硬體的進步, LDPC被廣泛的運用在通訊方面,而准迴旋式的低密度奇偶檢查碼(QC-LDPC)更是在新一代的無線通訊系統上被大量的使用且納入規格中. 在這篇論文中,我們提出一種動態排程的解碼方法,並且將這個方法使用在之前提出的類循環低密度奇偶檢查碼的解碼架構上, 用來縮短IEEE 802.16e標準的類循環低密度奇偶檢查碼 (QC-LDPC)的解碼時間. 我們基於適當的判斷標準對每個階層動態的省略, 重複或是執行其它的解碼運算.一種易於硬體上實現的提早停止策略也同時在這篇論文中被提出來, 其作用在於提早將部分的階層動態的跳過解碼, 如此一來可以大幅地減少遞迴解碼的數量, 以及較快速的達到收歛, 或是跳出解碼步驟.同時使用這兩種技術的修正型訊息傳遞解碼可以較沒有使用這兩種方法的解碼方式在相仿的錯誤表現上有效的減少計算複雜度. 我們同時的表現出了兩個獨自的方法, 並且將它們兩個合併於一起以顯示出它們的效果. 在這篇論文中, 我們不僅在相異的解碼方法中提供位元錯誤率的比較, 同時也提出了一種平均執行數目的數據來顯示出各種方法的差異. 最後我們將這兩種技術合併在一起,得到一種動態解碼並且快速提早收歛的方法, 同時用剛剛提出來的數據來表現出改進之後的優點.


    In this thesis, we propose a dynamic scheduling decoding
    method, to accelerate the decoding of quasi-cyclic low-density
    parity-check (QC-LDPC) codes used in the IEEE 802.16e standards
    based on a previously proposed decoding architecture. We dynamically
    skip, redo
    or do other decoding operations for each layered based on appropriate
    criteria. An early termination strategy which is efficient in
    hardware implementation is also proposed in this thesis. The
    modified message-passing decoding (MPD) using these two techniques
    simultaneously can reduce the computational complexity with similar
    error performance as compared to the case of not using these two
    techniques.

    1.Introduction 2.Reviews of Low-Density Parity-Check Codes 3.Performance improvement of LMPD-ICM by dynamic scheduling 4.Conclusions

    [1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT

    Press, 1963.

    [2] V. Zyablov and M. Pinsker, ”Estimation of the error-correction complexity

    of gallager low-density codes,” Probl. Pered. Inform., vol. 11, pp. 23-26, Jan. 1975.

    [3] G. A. Margulis, ”Explicit construction of graphs without short cycles and

    low density codes,” Combinatorica, vol. 2, no. 1, pp. 71-78, 1982.

    [4] R. M. Tanner, ”A recursive approach to low complexity codes,” IEEE

    Trans. Inf. Theory, vol. IT-27, no.. 5, pp. 533-547, Sep. 1981.

    [5] M. Sipser and D. A. Spielman, ”Expander codes,” IEEE Trans. Inform.

    Theory, vol. 42, pp. 1710-1722, Nov. 1996.

    [6] D. T. C. MacKay and R. M. Neal, ”Near shannon limit performance of

    low density parity check codes,” Electron. Lett., vol. 32, pp, 1645-1646, Aug. 1996.

    [7] D. T. C. MacKay, ”Good error correcting codes based on very sparse

    matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.

    [8] T. R. S.-Y. Chung, J. G. D. Forney and R. Urbanke, ”On the design of

    low-density parity-check codes within 0.0045 db of the shannon limit,”

    IEEE Commun. Lett., vol.5, no. 2, pp. 58-60, Feb. 2001.

    [9] Air interface for fixed and mobile broadband wireless access systems,

    IEEE Std. P802.16e/D12 Draft, Oct. 2005.

    [10] IEEE 802.11n Wireless LANsWWiSE Proposal: High Throughput extension

    to the 802.11 Standard, IEEE Std. 11-04-0886-00-000n.

    [11] Y. L. Ueng and C. C. Cheng, ”A fast-convergence decoding method and

    VLSI decoder architecture for irregular LDPC codes used in the IEEE

    802.16e standard,” in Proc. IEEE 66st Semiannual Vehicular Tec. Conf.,

    Baltimore, USA, Sept. 30-Oct. 3, 2007.

    [12] D.E Hocevar, ”A reduced complexity decoder architecture via layered

    decoding of LDPC codes,” IEEE Workshop on Signal Processing Systems, 2004 (SIPS ’04) pp. 107-112, 13-15 Oct. 2004.

    [13] T. Richardson and R. Urbanke, ”Efficient encoding of low-density paritycheck

    codes,” IEEE Trans. Inf. Theory, vol.47, no. 2, pp. 498-519, Feb. 2001.

    [14] R. Gallager, ”Low-density parity-check Codes,” IRE Trans. Inf. Theory,

    vol. 7, pp. 21-28, Jan. 1962.

    [15] S.C. Chou, M.K. Ku, and C.Y. Lin, ”Switching Activity Reducing Layered

    Decoding Algorithm for LDPC Codes,” in IEEE Inter. Symp. on Circuits

    and Systems, pp. 528-531, May 2008.

    [16] F. Kienle and N.Wehn ”Low complexity stopping criterion for LDPC code

    decoders,” in Proc. IEEE Semiann. Vehicular Technology Conf., pp.606-609, June 2005.

    [17] J. Li, X.-H You, and J. Li, ”Early stopping for LDPC decoding: convergence

    of mean magnitude (CMM),” in IEEE Commu. Lett., Vol. 10, pp.

    667-669, Sept. 2006.

    [18] D. Alleyne, and J. Sodha ”On stopping criteria for Low-Density Parity-

    Check Codes,” in IEEE Communication Systems, Networks and Digital Signal Processing. pp.633-637. July 2008.

    [19] D. Shin, K. Heo, S. Oh, and J. Ha, ”A Stopping Criterion for Low-

    Density Parity-Check Codes,” in Proc. IEEE Semiann. Vehicular Technology Conf., pp.1529-1533, April 2007.

    [20] R.-Y. Shao, S. Lin, and M.P.C. Fossorier, ”Two simple stopping criteria

    for turbo decoding,” in IEEE Trans. on Commu., Vol. 47, pp. 1117-1120, Aug. 1999.

    [21] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin and A.-Y. Wu, ”An 8.29 mm2 52 mW

    Multi-Mode LDPC Decoder Design for Mobile WiMAX System in 0.13

    μm CMOS Process,” in IEEE J. Solid-State Circuits Vol. 43, pp. 672-683, March 2008.

    [22] J. Chen and M. Fossorier, ”Density evolution for two improved BPbased

    decoding algorithms of LDPC codes,” IEEE Commum. Lett., vol. 6, pp. 208-210, May 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE