研究生: |
鄭凱文 Kai-Wen Cheng |
---|---|
論文名稱: |
TiO2-RuO2人工超晶格結構演化及特性之研究 Structural Evolution and Characteristics of TiO2-RuO2 Artificial Superlattice |
指導教授: |
甘炯耀
Jon-Yiew Gan 葉均蔚 Jien-Wei Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 超晶格 、氧化鈦 、氧化釕 |
外文關鍵詞: | superlattice, titanium dioxide, ruthenium dioxide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用具有相同結構,但為不同材料組成的雙氧化物來製作超晶格(Superlattice)結構,出現奇特且異於個別材料在巨觀尺度上的性質,已經引起廣泛研究。如利用應變造成鐵電性質的增強、磁性離子在結構中排列序化而產生鐵磁性等。另外在高溫超導層狀氧化物被發現時,其中發現其結構可視為導電層與絕緣層的交替週期的延伸,使得部分學者開始對以超晶格發展超導性感到興趣。因此,本實驗主要利用RuO2氧化物具有異於氧化物的導電性,以及選用與其結構上匹配的TiO2絕緣氧化物,藉由超晶格的製作,探討其二維結構性質。
實驗結果發現,TiO2與RuO2以最佳條件下鍍覆在Sapphire(0001)單晶基板上,呈現幾十奈米大小的橢圓晶粒,造成表面粗糙度不佳,而無法在Sapphire上進行超晶格薄膜鍍製。即使選用看似與RuO2匹配性較佳的MgO(100)單晶基板上,在進行每層約2.5nm大小的超晶格薄膜鍍製後,也呈現膜層間界面模糊不清的情況,顯示RuO2與TiO2超晶格薄膜也無法鍍覆在MgO基板上。
採用直接將TiO2鍍覆在RuO2單晶一維奈米柱上,發現其TiO2是以磊晶(Epitaxy)的方式鍍覆在RuO2奈米柱,並且由EDS成分分析,證實RuO2與TiO2的確在低溫下為互不相溶氧化物。此外,奈米柱發現到有彎曲現象,推測為兩者間熱膨脹係數的差異所致。
1.Zu Rong Dai, Zheng Wei Pan, and Zhong L. Wang, "Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation", Adv. Funct. Mater. 2003, 13, No. 1, 9-24.
2.Melissa S. Sander, Matthew J. Cote, We Gu, Brain M. Kile, and Carl P. Tripp, "Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates", Adv. Mater. 2004, 16, No. 22, 2052-2057.
3.K. E. Swider, C. I. Metzbacher, P. L. Hagans, and D. R. Rolison, "Synthesis of Ruthenium Dioxide-Titanium Dioxide Aerogels: Redistribution of Electrical Properties on the Nanoscale", Chem. Mater. 1997, 9, 1248-1255.
4.Marko Hrovat, Janez Holc, Zoran Samardzija, and Goran Drazic, "The extent of solid solubility in the RuO2–TiO2 system", J. Mater. Res., Vol 11, No. 3, Mar 1996.
5.Navrotsky, A. and O. J. Kleppa, "Enthalpy of the Anatase-Rutile Transformation", Journal of the American Ceramic Society, 50.
6.M. GOPAL, W. J. MOBERLY CHAN and L. C. De JONGHE, "Room temperature synthesis of crystalline metal oxides", J. Mater. Sci. 32 (1997) 6001.
7.P. A. COX, "Transition Metal Oxides", 1992, 105.
8.Keith M. Glassford and James R. Chelikowsky, "Electronic and structural properties of RuO2", Phy. Rev. B, Vol. 47, No. 4, Jan 1993.
9.L. F. Mattheiss," Electronic structure of RuO2, OsO2 and IrO2", Phys. Rev. B, 13, 2433, 1976.
10.Huicai Zhong, Greg Heuss, and Veena Misra, "Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics", Appl. Phys. Lett., Vol. 78, No. 8, Feb 2001.
11.B. W. Dodson, L. J. Schowalter, J. E. Cunningham, F. H. Pollak, "Layered Structures—Heteroepitaxy, Strain, and Metastability", MRS., Vol. 160, 1990.
12.A. F. J. Levi, "Applied Quantum Mechanics", 2003, 186.
13.Y.H. Wang, S.S. Li and Pin Ho, "Voltage-tunable dual-mode operation InAlAs/InGaAs quantum well infrared photodetector for narrow- and broadband detction at 10 um," Appl. Phys. Lett., Vol. 62, 621, 1993.
14.Kenji Ueda, Hitoshi Tabata, Tomoji Kawai, "Ferromagnetism in LaFeO3-LaCrO3 Superlattices", Science, Vol. 280, May 1998.
15.C. Zener, Phys. Rev. 82, 403, 1951.
16.J. Verbeeck, O. I. Lebedev, G. Van Tendeloo, and B. Mercey, "SrTiO3(100)/(LaMnO3)m(SrMnO3)n Layered heterostructures: A combined EELS and TEM study", Phys. Rev. B, Vol 66, No. 184426, 2002.
17.J. Verbeeck, O. I. Lebedev, and G. Van Tendeloo, "Electron energy-loss spectroscopy study of a (LaMnO3)8-(SrMnO3)4 heterostructure", Appl. Phys. Lett., Vol. 79, 2037, 2001.
18.P. A. Salvador, A.-M. Haghiri-Gosnet, B. Mercey, M. Hervieu, and B. Raveau, "Growth and magnetoresistive properties of (LaMnO3) m(SrMnO3) nsuperlattices", Appl. Phys. Lett., Vol. 75, 2638, 1999.
19.C. H. Ahn, K. M. Rabe, J.-M. Triscone, "Ferroelectricity at the Nanoscale: Local Polarizationin Oxide Thin Films and Heterostructures", Science, Vol. 303, January 2004.
20.Takaaki Tsurumi, Takakiyo Harigai, Daisuke Tanaka, Song-Min Nam, Hirofumi Kakemoto, Satoshi Wada, and Keisuke Saito, "Artificial ferroelectricity in perovskite superlattices", Appl. Phys. Lett., Vol. 85, 5016, 2004.
21.Yuan-Chang Liang and Tai-Bor Wu, "Structural characteristics of epitaxial BaTiO3/LaNiO3 superlattice", J. Appl. Phys., Vol 96, No. 1, July 2004.
22.J. B. Neatona and K. M. Rabe, "Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices", Appl. Phys. Lett., Vol. 82, 1586, 2003.
23.M. Sepliarsky, "Ferroelectric properties of KNbO3/KTaO3 superlattices by atomic-level simulation", J. Appl. Phys., Vol 90, No. 9, November 2001.
24.G. Chern, S. D. Berry, D. M. Lind, H. Mathias, and L. R. Testardi, "Electrical-transport properties of Fe304/NiO superlattices", Phys. Rev. B, Vol 45, No. 7, 1992.
25.G. Chern, S. D. Berry, D. M. Lind, H. Mathias, and L. R. Testardi, "Modulated electric conductivity in Fe304/NiO superlattices", Appl. Phys. Lett., Vol. 58, 2512, 1991.
26.D. Guerin, S. Ismat Shah, "Reactive-sputtering of titanium oxide thin films", J. Vac. Sci. Technol. A 15(3), May/Jun 1997.
27.T. Asanuma and T. Matsutani, "Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma", J. Appl. Phys., Vol. 95, No. 11, 1 June 2004.
28.Chu-Chi Ting and San-Yuan Chen, "Structural evolution and optical properties of TiO2 thin films preparedby thermal oxidation of sputtered Ti films", J. Appl. Phys., Vol. 88, No. 8, 15 October 2000.
29.N. Martin, C. Rousselot , C. Savall, F. Palmino, "Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering", Thin Solid Fihns 287 (1996) 154-163.
30.M. H. Suhail, G. Mohan Rao, and S. Mohan, "dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films", J. Appl. Phys. 71 (3), 1 February 1992.
31.Y. Z. Lin, J. Y. Gan, Master Thesis, National Tsing-Hua Unversity, Taiwan, "Synthesis of large-area RuO2 nanowires by reactive rf magnetron sputtering method and their field emission properties", 2005.
32.陳力俊等,“材料電子顯微鏡學”第65頁。