簡易檢索 / 詳目顯示

研究生: 王俐雯
Wang, Li-Wen.
論文名稱: 大粒徑高黏度奈米金屬粒子塗料之高效燒結技術
High Efficiency Sintering Techniques for Large and Viscous Metal Nanoparticle Ink
指導教授: 羅丞曜
Lo, Cheng-Yao
口試委員: 陳政寰
Chen, Cheng-Huan
陳榮順
Chen, Rong-Shun
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 片電阻值近紅外光燒結表面粗糙度金屬網格
外文關鍵詞: Metal mesh, Near-infrared (NIR) sintering, Sheet resistance, Surface roughness
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以近紅外光燒結凹版轉印高黏度微米銀漿顆粒,使其構成的金屬網格表面粗糙度及導電性得以改善。燒結後近乎零孔隙率的金屬網格顯示本研究所開發之燒結方法具有實際效益。實驗結果顯示,經近紅外光燒結後,金屬網格表面粗糙度改善60.5%,銀比例提升18.5%;比起傳統烘箱燒結,此兩特性分別優化2.69%及1.37%。除此之外,能量色散X-射線光譜及拉曼光譜分析結果顯示此燒結方法有助於抑制非導電化合物形成化學鍵結,致使表面粗糙度及片電阻值分別改善90.9%及98.6%。近紅外光對燒結金屬網格改善表面粗糙度及增進導電性有實際效益,再加上其支援卷對卷的優點,更使得近紅外光燒結技術比起傳統烘箱燒結實際適合應用於連續式的有機發光二極體生產製程。


    This work proposes a near-infrared (NIR) sintering method to improve the surface roughness and enhance the sheet resistance of a gravure-offset-printed metal mesh with viscous silver paste that contains large nanoparticles. Results indicate that the sintering was thorough because the porosity in the metal mesh approached zero percent. Examination proved a 60.5% surface roughness improvement and a 18.5% increment of Ag content in the metal mesh after NIR sintering, indicating respectively 2.69% and 1.37% improvement compared with conventional oven operations. In addition, material analyses through both energy-dispersive and Raman spectroscopy explained the reduction of insulative elements and features with chemical bonds in the metal mesh, supporting the finding of overall respective improvements in surface roughness (90.9%) and sheet resistance (98.6%). The effective NIR sintering evaluated in the present work was proven to be not only capable of replacing discontinuous oven operations in roll-to-roll manufacturing but also efficient in enhancing the material characteristics under identical sintering conditions compared with conventional oven operations.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 符號表 XII 第1章 緒論 1 1.1.前言 1 1.1.1.凹版印刷技術應用於製造非軟性電子之挑戰 1 1.1.2.金屬網格之特性與用途 2 1.1.3.導電銀漿油墨的燒結原理 3 1.1.4.電性及光學表現評估 5 1.2.研究動機 6 1.3.文獻回顧 7 1.3.1.非支援卷對卷之燒結技術 7 1.3.1.1.微波燒結 7 1.3.1.2.雷射燒結 8 1.3.1.3.電漿燒結 8 1.3.2.支援卷對卷之燒結技術 9 1.3.2.1.近紅外光(Near Infrared, NIR)燒結 9 1.3.2.3.快速熱退火(Rapid Thermal Annealing, RTA)燒結 10 1.3.3.燒結效益的量化及評比 10 第2章 理論與設計 12 2.1.實驗進行之導向 12 2.1.1.金屬顆粒大小與燒結溫度之關係 12 2.1.2.支援卷對卷之燒結方法 13 2.2.結果測量之導向 13 2.2.1.計算優值(Figure of Merit, FOM)評估效益 13 2.2.2.元素組成分析 14 第3章 實驗製程方法 15 3.1.實驗流程 15 3.2.實驗製程與設備 16 3.2.1.燒結設備 16 3.2.1.1.烘箱系統(Oven System) 16 3.2.1.2.近紅外光系統(NIR System) 17 3.2.1.3.快速熱退火系統(RTA System) 18 3.2.2.測量和分析設備 18 3.2.2.1.四點探針(Four Points Probe) 18 3.2.2.2.場發射槍掃描式電子顯微鏡與能量色散X-Ray光譜 19 3.2.2.3.聚焦離子束掃描式顯微系統(FIB-SEM)與影像分析 21 3.2.2.4.表面輪廓儀(Stylus Profiler) 22 3.2.2.5.光譜儀(Spectrometer) 23 3.2.2.6.拉曼光譜儀(Raman Spectroscopy) 24 第4章 結果與討論 25 4.1.表面粗糙度與片電阻值 25 4.2.結構與孔隙率 27 4.3.元素組成 28 4.4.FOM分析 30 4.5.田口實驗設計之驗證 31 第5章 結論 33 第6章 未來工作 35 參考文獻 89 發表清單 94

    [1]Roar R. Søndergaard, Markus Hösel, Frederik C. Krebs, Roll-to-Roll fabrication of large area functional organic materials, Polymer Physics, Volume 51, Issue 1 (2013) 16–34.
    [2]Taik-Min Lee, Jae-Ho Noh, Chung Hwan Kim, Jeongdai Jo, Dong-Soo Kim, Development of a gravure offset printing system for the printing electrodes of flat panel display, Thin Solid Films, 518 (2010) 3355–3359.
    [3]F. Laurent M. Sam, M. Anas Razali, K.D.G. Imalka Jayawardena, Christopher A. Mills, Lynn J. Rozanski, Michail J. Beliatis, S. Ravi P. Silva, Silver grid transparent conducting electrodes for organic light emitting diodes, Organic Electronics, Volume 15, Issue 12 (2014) 3492–3500.
    [4]Michael Layani, Shlomo Magdassi, Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature, J. Mater. Chem. 21 (2011) 15378-15382.
    [5]Markus Hösel, Dechan Angmo, Roar R. Søndergaard, Gisele A. dos Reis Benatto, Jon E. Carlé, Mikkel Jørgensen, Frederik C. Krebs, High-Volume Processed, ITO-Free Superstrates and Substrates for Roll-to-Roll Development of Organic Electronics, Advanced Science, Volume 1, Issue 1 (2014) 1400002.
    [6]Erika Hrehorova, Marian Rebros, Alexandra Pekarovicova, Bradley Bazuin, Amrith Ranganathan, Sean Garner, Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics, Journal of Display Technology, Vol. 7, Issue 6 (2011)318-324.
    [7]A. L. Gonzalez, Cecilia Noguez, J. Beranek, A. S. Barnard, Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles, J. Phys. Chem. C , 118 (2014) 9128−9136.
    [8]Julia R. Greer, Robert A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks, Acta Materialia, 55 (2007) 6345–6349.
    [9]Shlomo Magdassi, Michael Grouchko, Oleg Berezin, Alexander Kamyshny, Triggering the Sintering of Silver Nanoparticles at Room Temperature, ACS Nano, 4 (2010) 1943–1948.
    [10]L. Hu, D. S. Hecht, G. Grüner, Percolation in Transparent and Conducting Carbon Nanotube Networks, Nano Lett. 4 (2004) 2513–2517.
    [11]Sergio B. Sepulveda-Mora, Sylvain G. Cloutier, Figures of Merit for High-Performance Transparent Electrodes Using Dip-Coated Silver Nanowire Networks, Journal of Nanomaterials 9 (2012) 7
    [12]Z. Chen, B. Cotterell, W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays, Engineering Fracture Mechanics, Vol. 69, 5 (2002) 597–603.
    [13]H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, H.L. Young, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films, Journal of the American Chemical Society, Vol. 129, 25 (2007) 7758–7759.
    [14]A. Vollmer, X. L. Feng, X. Wang, Electronic and structural properties of graphene-based transparent and conductive thin film electrodes, Applied Physics A, Vol. 94, 1 (2009) 1–4.
    [15]Ju Won Lim, Young Tack Lee, Rina Pandey, Tae-Hee Yoo, Byoung-In Sang, Byeong-Kwon Ju, Do Kyung Hwang, Won Kook Choi, Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells, Optics Express, Vol. 22, 22 (2014) 26891-26899.
    [16]Morteza Oghbaei, Omid Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds 494 (2010) 175–189.
    [17]Seung H Ko, Heng Pan, Costas P Grigoropoulos, Christine K Luscombe, Jean M J Frechet, Dimos Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology, 18 (2007) 345202.
    [18]J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering, Assembly Automation, Volume 23, 4 (2003) 357–371.
    [19]Jolke Perelaer, Robin Jani, Michael Grouchko, Alexander Kamyshny,
    Shlomo Magdassi, Ulrich S. Schubert, Plasma and Microwave Flash Sintering of a Tailored Silver Nanoparticle Ink, Yielding 60% Bulk Conductivity on Cost-Effective Polymer Foils, Advanced Materials, Volume 24, 29 (2012) 3993–3998.
    [20]Z. A. Munir, U. Anselmi-Tamburini, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J MATER SCI, 41 (2006) 763–777.
    [21]Buffat P, Borel J P., Size effect on melting temperature of gold particles, Physical Review A, 13 (1976) 2287-2298.
    [22]Simona Delsante, Gabriella Borzone, Rada Novakovic, Daniele Piazza, Giancarlo Pigozzi, Jolanta Janczak-Rusch, Martina Pillonid, Guido Ennas, Synthesis and thermodynamics of Ag–Cu nanoparticles, : Phys. Chem., 17 (2015) 28387.
    [23]Martyn Cherrington, Tim C. Claypole, Davide Deganello, Ian Mabbett, Trystan Watson, David Worsley, Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink, J. Mater. Chem., 21 (2011) 7562.
    [24]Mohammad Mamunur Rashida, Kyung Ho Cho, Gwiy-Sang Chung, Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film, Applied Surface Science, 279 (2013) 23–30.
    [25]Ian E. Stewart, Myung Jun Kim, and Benjamin J. Wiley, Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films, ACS Appl. Mater. Interfaces, 9 (2017)1870−1876.
    [26]Jorik van de Groep, Pierpaolo Spinelli, Albert Polman, Transparent Conducting Silver Nanowire Networks, Nano Lett., 12 (2012) 3138−3144.
    [27]Anna Moisala1, Albert G Nasibulin1, Esko I Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes, J. Phys.: Condens. Matter 15 (2003) S3011–S3035.
    [28]M. Lahti, S. Leppavuori, V. Lantto, Gravure-offset-printing technique for the fabrication of solid films, Applied Surface Science, 142 (1999) 367–370.
    [29]Clemente Ibarra-Castanedo @ Canada Research Chair in Multipolar Infrared Vision,The infrared bands in the infrared spectrumé, 30 November 2007.
    [30]Andrew P. Schuetze, Wayne Lewis, Chris Brown, and Wilhelmus J. Geerts, A laboratory on the four-point probe technique, Am. J. Phys. 72 (2004).
    [31]Ludwig Reimer, Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 2013.
    [32]V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B, 62 (2007) 63–68.
    [33]Daisuke Shindo, Tetsuo Oikawa, Energy Dispersive X-ray Spectrosc-
    Opy, 2002
    [34]Dong-Hyeok Lee, Nahm-Gyoo Cho, Assessment of surface profile data acquired by a stylus profilometer, Meas. Sci. Technol. 23 (2012) 105601.
    [35]YassineMrabet, Principe du spectrophotomètre UV-visible monofaisceau., 2007.
    [36]Moxfyre, Molecular energy levels and Raman effect, 2009.
    [37]Geoffrey I.N. Waterhouse, Graham A. Bowmaker, James B. Metson, Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study, Applied Surface Science, Volume 214, Issues 1–4 (2003) 36–51.
    [38]Hiroshi Nakatsuji, Zhen-Ming Hu, Hiromi Nakai, Keiji Ikeda, Activation of O2 on Cu, Ag, and Au surfaces for the epoxidation of ethylene: dipped adcluster model study, Surface Science 387 (1997) 328-341.
    [39]Chuan-Bao Wang, Goutam Deo, Israel E. Wachs, Interaction of Polycrystalline Silver with Oxygen, Water, Carbon Dioxide, Ethylene, and Methanol: In Situ Raman and Catalytic Studies, J. Phys. Chem. B 103 (1999) 5645-5656.
    [40]C.I. Carlisle, T. Fujimoto, W.S. Sim, D.A. King, Atomic imaging of the transition between oxygen chemisorption and oxide growth on Ag{1 1 1}, Surface Science 470 (2000) 15-31.
    [41]Sergio B. Sepulveda-Mora, Sylvain G. Cloutier, Figures of Merit for High-Performance Transparent Electrodes Using Dip-Coated Silver Nanowire Networks, Journal of Nanomaterials 9 (2012) 7
    [42]Jung-Yong Lee, Stephen T. Connor, Yi Cui, Peter Peumans, Solution-Processed Metal Nanowire Mesh Transparent Electrodes, Nano Lett. 8 (2008) 689-692.
    [43]Jorik van de Groep, Pierpaolo Spinelli, Albert Polman, Transparent Conducting Silver Nanowire Networks, Nano Lett. 12 (2012) 3138–3144.
    [44]Mark Allen, Jaakko Leppäniemi, Marja Vilkman, Ari Alastalo, Tomi Mattila, Substrate-facilitated nanoparticle sintering and component interconnection procedure, Nanotechnology 21 (2010) 475204.
    [45]Martyn Cherrington, Tim C. Claypole, Davide Deganello, Ian Mabbett, Trystan Watson, David Worsley, Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink, J. Mater. Chem. 21 (2011) 7562-7564.

    QR CODE