簡易檢索 / 詳目顯示

研究生: 郭靜雯
Guo, Jing-Wen
論文名稱: 三維微腫瘤暨微環境建構實驗室晶片應用於溫熱化療藥物組合篩選
In-vitro tumor and microenvironment reconstruction labchip applied to HIPEC drug screening
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 盧向成
Lu, Shiang-Cheng
陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 微流體晶片腹膜轉移腹腔溫熱化療藥物篩選平台多細胞腫瘤球體共培養
外文關鍵詞: Microfluidics chip, Peritoneal carcinomatosis, Hyperthermic Intraperitoneal Chemotherapy, Drug testing platform, Multicellular tumor spheroids
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腹膜轉移(Peritoneal Carcinomatosis, PC)為癌症末期疾病,成因是腹腔周遭器官癌症,如大腸直腸癌、胃癌、卵巢癌等,其癌細胞自器官脫落至腹腔中,導致癌細胞附著於腹膜且生長為新的腫瘤,其治療困難且嚴重影響患者生活品質。近年來,腹腔熱化療搭配細胞減積手術獲得關注。先以細胞減積手術切除肉眼可見腫瘤,再將加熱至42~43℃的化療藥物灌流至腹腔中,對腫瘤及游離的癌細胞進行毒殺,由於癌細胞對熱的耐受性較低,因此臨床上具有良好的治療效果。不過藥物選擇通常依據外科醫生治療經驗判斷,但患者間存在個體差異且腹膜轉移源頭不同,故經驗法則不一定適用。本研究設計一系統化的藥物篩選晶片,透過流道的幾何設計,以產生不同藥物組合與不同細胞比例的共培養細胞球體,且分別在37℃與43℃對不同細胞比例球體進行藥物灌流治療,由實驗結果可知,加熱對於藥物治療有加乘效果,透過螢光共定位分析,纖維母細胞比例越高之組別,癌細胞死亡程度較低,推測纖維母細胞對癌細胞有保護及抗藥性之效果,並且發現Cisplatin+ Docetaxel對癌細胞有最良好的毒殺效果。透過此設計模擬不同情況之腫瘤微環境,使篩選結果更貼近體內真實情況,期望透過此晶片提供一可靠的藥篩平台,成為醫生藥物組合治療參考。
    關鍵字:微流體晶片、腹膜轉移、腹腔溫熱化療、藥物篩選平台、多細胞腫瘤球體共培養


    Peritoneal Carcinomatosis (PC) is terminal cancer caused by cancer in the organs near the abdomen, such as colorectal cancer, gastric cancer, ovarian cancer, etc. PC severely affects the patient's quality of life. In recent years, Hyperthermic Intraperitoneal Chemotherapy (HIPEC) combined with cytoreductive surgery (CRS) has attracted attention to treat peritoneal metastasis. First, the tumors visible to the naked eye are removed by cytoreductive surgery. Then the chemotherapeutic drugs are heated to 42-43°C and perfused into the abdominal cavity. The abdominal cavity is filled with heavy-dense medications to kill the tumor and cancer cells. Due to the low tolerance of cancer cells to heat, it has an excellent clinical therapeutic effect. However, the choice of drugs and their combination is usually based on the surgeon's treatment experience. In addition, the rules of thumb may not apply due to individual differences and different sources of peritoneal metastases.
    In this study, we designed a systematic drug screening chip that uses the design of a specific flow channel geometry to generate different drug combinations and co-cultured spheroids with varying ratios of cells. We treated these spheroids with drug perfusion at 37°C and 43°C, respectively. The experimental results showed that the heated group had a synergistic effect on drug treatment. Through fluorescence colocalization analysis, the higher the proportion of fibroblasts, the lower the degree of cancer cell death. We consider that fibroblasts could have a protective and drug-resistant effect on cancer cells. Moreover, we found that the combination of Cisplatin and Docetaxel showed the best cytotoxic effect on cancer cells.
    The in-vivo actual situation is approached through our design of the in-vitro tumor and its microenvironment to apply the in-vitro screening results. This microfluidic chip is aimed to provide a reliable drug screening platform and become a reference for doctors' drug combination treatment.

    Keywords: Microfluidics chip, Peritoneal carcinomatosis, Hyperthermic Intraperitoneal Chemotherapy, Drug testing platform, Multicellular tumor spheroids

    目錄 ABSTRACT I 摘要 II 誌謝 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究背景 4 1.3.1 生醫微機電與實驗室晶片 4 1.3.2 癌症 5 1.4 文獻回顧 11 1.4.1 藥物篩選陣列晶片 11 1.4.2 濃度梯度產生器與組合混合器 15 1.4.3 被動式微型混合器 21 1.4.4 三維細胞球體培養 25 1.4.5 腫瘤微環境 (Tumor microenvironment) 29 第二章 系統理論與晶片設計 32 2.1 系統理論 32 2.1.1 微流體晶片設計理論 32 2.1.2 微型混合理論 35 2.2 微流體晶片設計 38 2.2.1 詳細設計及功能介紹 38 第三章 微流道晶片製程 45 3.1 製作流程 45 3.1.1 微流道晶片母模製程 45 3.1.2 系統晶片製程 47 3.2 製程結果 49 第四章 實驗材料與方法 50 4.1 實驗材料 50 4.1.1 細胞培養 50 4.1.2 抗細胞貼附水膠 Poly- HEMA 51 4.1.3 細胞螢光染劑 52 4.1.4 細胞存活率分析 (CCK-8 assay) 53 4.1.5 化療藥物 55 4.2 實驗設備 56 4.3 晶片操作流程 57 第五章 實驗結果與討論 59 5.1 晶片藥物組合測試 59 5.2 晶片功能測試 62 5.2.1 Poly- HEMA貼附 62 5.2.2 微結構抓取效果 62 5.2.3 細胞比例混合器效果 63 5.3 多細胞共培養團聚效果 65 5.4 藥物半抑制濃度測試 66 5.5 晶片藥物測試 68 5.5.1 多細胞球體藥物治療測試 68 5.5.2 螢光共定位分析(Colocalization analysis) 71 第六章 結論及未來展望 80 第七章 參考文獻 82 圖目錄 圖1- 1微機電技術應用[12] 5 圖1- 2腹膜及腹腔結構圖[13] 7 圖1- 3腹腔熱化療示意圖[21] 10 圖1- 4腹腔溫熱化療常用藥物[18] 10 圖1- 5 Nannan Ye等人設計之藥物篩選陣列晶片[23] 12 圖1- 6 Choong Kim等人建立之抗腫瘤血管新生藥篩晶片[24] 13 圖1- 7 Yantao Fan等人建立之PEGDA基質之腦癌藥篩晶片[25] 14 圖1- 8 Noo Li Jeon等人提出的金字塔分支狀濃度梯度產生器[26] 16 圖1- 9 Paul J. Hung等人結合8階濃度梯度產生器之藥物篩選晶片[27] 16 圖1- 10 Chandrasekhar R. Kothapalli等人設計之晶片,(a)晶片示意圖,(b)濃度梯度模擬情形,(c)染色神經元接受神經誘導的遷移情形[28] 17 圖1- 11Kangsun Lee等人提出的組合式混合器[30] 18 圖1- 12 Mike C. Liu等人設計結合Parylene C材質之單層立體式組合混合器晶片[31] 19 圖1- 13 Jiahui Sun等人設計的三角形藥物組合流道[32] 20 圖1- 14 Kangsun Lee等人設計之可產生15種混合結果的組合式混合器[33] 21 圖1- 15交叉型流道混合器[35] 22 圖1- 16鋸齒狀混合器[36] 22 圖1- 17五組微型特斯拉混合器示意圖[38] 23 圖1- 18微型特斯拉混合器混合效果示意圖[37] 23 圖1- 19微型特斯拉混合器作用原理圖[38] 23 圖1- 20 Junyao Wang 等人設計之三維微型混合器[39] 24 圖1- 21腫瘤球體特徵示意圖。(A)以增值速率區分出三種細胞層 (B)氧氣濃度梯度 (C)由於中心缺乏氣體交換,球體由內到外的pH值的濃度梯度 (D)在共同培養的腫瘤球體中顯示細胞和周圍的細胞外基質[40] 26 圖1- 22以微井結構培養細胞球體示意圖。(A) 將含細胞培養液注入晶片(B) 細胞開始沉降在微流道和微井的底部(C) 純培養液流經微流道,沖洗多餘的細(D) 細胞因子與特性使在非粘附微井底部建立細胞-細胞相互作用(E) 在新鮮培養液的持續灌流下使細胞球體形成[41] 26 圖1- 23 Mohammad Amin Hajari等人提出Tumor-on-a-chip (ToC)概念示意圖[42] 27 圖1- 24聚甲基丙烯酸羥基乙酯Poly(2-hydroxyethyl methacrylate)塗層示意圖[43] 28 圖1- 25 Yongli Chen 等人提出的PVA塗層微井晶片[44] 28 圖1- 26 腫瘤微環境的組成[48] 29 圖1- 27 CAF的潛在細胞來源[50] 31 圖1- 28 CAF在胃癌之腫瘤微環境中的功能示意圖[51] 31 圖2- 1 司特勞克數為雷諾數之關係圖[52] 37 圖2- 2系統晶片示意圖 38 圖2- 3 (a) Jiahui Sun等人混合設計[32] (b)本研究藥物混合模組,放大區域為微型特斯拉閥 39 圖2- 4 上層晶片示意圖 41 圖2- 5 藥物混合模組示意圖 41 圖2- 6 微混合器示意圖、微型特斯拉閥結構放大圖及藥物流向 42 圖2- 7 (a)細胞比例混合模組示意圖 (b)單一混合模組放大圖 42 圖2- 8 微結構示意圖 43 圖2- 9 下層晶片示意圖及側面圖(左邊紅色虛線橫切之視圖) 44 圖3- 1 晶片母模製程 46 圖3- 2 PDMS晶片翻膜示意圖 47 圖3- 3 系統晶片製程示意圖 48 圖3- 4 系統晶片示意圖 49 圖3- 5 系統晶片實體照片 49 圖4- 1 WST-8 and WST-8 formazan結構及細胞存活率檢測原理[55] 53 圖4- 2 小型溫控培養箱示意圖,用以43℃熱療培養 54 圖4- 3孔盤之吸光值量測 (a)微量盤分光光譜儀 (b)CCK-8試驗示意圖 54 圖4- 4 儀器架設圖 56 圖4- 5 晶片運作流程圖 藍色箭頭為藥物流向,黃色箭頭為細胞流向,黃色圈選區域為細胞球體培養之微井 58 圖4- 6 細胞球體培養示意圖 58 圖5- 1 實驗架設示意圖 60 圖5- 2染料混合預期圖以及實驗結果圖 60 圖5- 3 (a) 藥物混合模擬結果 (b)微型特斯拉閥速度分布圖 61 圖5- 4 晶片內的poly-HEMA塗層結果 62 圖5- 5 幾何微結構抓取效果 (a)明視野 (b)螢光圖(綠色螢光為AGS;紅色螢光為NIH/3T3,比例尺:100μm) (c)微結構於晶片位置與放大圖 62 圖5- 6 細胞比例混合器效果 (a)腔室1 (b) 腔室2 (b) 腔室3,比例尺:100μm 63 圖5- 7 細胞培養5天後團聚情形 65 圖5- 8 細胞在晶片團聚效果 (a)腔室1 (b) 腔室2 (b) 腔室3,比例尺:100μm 65 圖5- 9 使用三種HIPEC藥物的IC50結果,(a)-(c)為37℃各個藥物的半抑制濃度,(d)-(f)為43℃各個藥物的半抑制濃度 67 圖5- 10 死亡細胞螢光強度分布情形(37℃組),比例尺: 100𝜇m 69 圖5- 11 死亡細胞平均螢光強度(37℃組) 69 圖5- 12 死亡細胞螢光強度分布情形(43℃熱療組),比例尺: 100𝜇m 70 圖5- 13 死亡細胞平均螢光強度(43℃熱療組) 71 圖5- 14 共定位散點圖示意圖[68] 72 圖5- 15 散點圖定位程度判斷[68] 73 圖5- 16細胞比例1:1(AGS:NIH/3T3)之組別(37℃) (a)螢光圖 (b)散點圖 74 圖5- 17細胞比例1:6(AGS:NIH/3T3)之組別(37℃) (a)螢光圖 (b)散點圖 74 圖5- 18細胞比例6:1(AGS:NIH/3T3)之組別(37℃) (a)螢光圖 (b)散點圖 74 圖5- 19細胞比例1:1(AGS:NIH/3T3)之組別(43℃) (a)螢光圖 (b)散點圖 75 圖5- 20細胞比例1:6(AGS:NIH/3T3)之組別(43℃) (a)螢光圖 (b)散點圖 75 圖5- 21細胞比例6:1(AGS:NIH/3T3)之組別(43℃) (a)螢光圖 (b)散點圖 75 圖5- 22 AGS之曼德斯共定位係數(37℃) 77 圖5- 23 AGS之曼德斯共定位係數(43℃) 78 圖5- 24 NIH/3T3之曼德斯共定位係數(37℃) 79 圖5- 25 NIH/3T3之曼德斯共定位係數(43℃) 79   表目錄 表2- 1雷諾數(Re)使用之參數 40 表4- 1 poly-HEMA 溶液塗佈於培養盤之建議體積[54] 52 表5- 1 RGB量化結果圖 60 表5- 2兩種細胞數量之比例 64

    [1] "110年國人平均壽命." https://www.moi.gov.tw/News_Content.aspx?n=4&sms=9009&s=264811
    [2] "世界衛生組織 癌症資料." https://www.who.int/news-room/fact-sheets/detail/cancer
    [3] "中華民國 109 年癌症登記報告." https://www.hpa.gov.tw/File/Attach/16434/File_20339.pdf
    [4] "腹膜轉移癌患者的另一個選擇~腫瘤減積手術併腹腔內溫熱化學治療." https://www.cgmh.org.tw/cgmn/category.asp?id_seq=1902013#.YmRXINpBy5d
    [5] "腫瘤清除手術/腹腔溫熱化學治療." http://www.cmuh-crs.com/%E8%85%B9%E8%85%94%E9%8F%A1%E6%89%8B%E8%A1%93.html
    [6] "中國醫訊177期." https://www.cmuh.cmu.edu.tw/FileUploads/FileUpload/%E4%B8%AD%E5%9C%8B%E9%86%AB%E8%A8%8A177%E6%9C%9F.pdf
    [7] S. Kusamura et al., "Peritoneal Surface Oncology Group International (PSOGI) multicenter study on nomograms to predict overall survival in diffuse malignant peritoneal mesothelioma," Journal of Clinical Oncology, vol. 36, no. 15_suppl, pp. e15701-e15701, 2018, doi: 10.1200/JCO.2018.36.15_suppl.e15701.
    [8] W. J. Van Driel et al., "Hyperthermic intraperitoneal chemotherapy in ovarian cancer," New England Journal of Medicine, vol. 378, no. 3, pp. 230-240, 2018.
    [9] "「腫瘤減積手術」搭配「腹腔溫熱化學治療」提供腹膜腫瘤轉移患者的新選擇." http://www.chimei.org.tw/ePhotoAlbum/files/08774845529A73456152CF71A7F4F3FF.pdf
    [10] J. R. McMullen, M. Selleck, N. R. Wall, and M. Senthil, "Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy," Oncotarget, vol. 8, no. 26, pp. 43481-43490, 2017.
    [11] "淺談腹腔內化療." https://jtp.taiwan-pharma.org.tw/138/006.html
    [12] C.-H. Liu et al., "Adaptable and integrated packaging platform for MEMS-based combo sensors utilizing innovative wafer-level packaging technologies," in 2013 IEEE 63rd Electronic Components and Technology Conference, 2013: IEEE, pp. 1675-1681.
    [13] B. L. Brücher et al., "Peritoneal carcinomatosis: cytoreductive surgery and HIPEC–-overview and basics," Cancer investigation, vol. 30, no. 3, pp. 209-224, 2012.
    [14] E. Y. Lee, M. C. Liszewski, M. S. Gee, P. Daltro, and R. Restrepo, Pediatric Body MRI: A Comprehensive, Multidisciplinary Guide. Springer Nature, 2020.
    [15] F. Coccolini et al., "Peritoneal carcinomatosis," World journal of gastroenterology: WJG, vol. 19, no. 41, p. 6979, 2013.
    [16] "台北市立萬芳醫院-腹膜癌間皮瘤腹腔熱化療HIPEC專業網站." http://hipec.tw/introduction.html
    [17] Y. Li, Y. Yu, and Y. Liu, "Report on the 9th international congress on peritoneal surface malignancies," Cancer Biology & Medicine, vol. 11, no. 4, pp. 281-284, 2014.
    [18] P. H. Sugarbaker and K. Van der Speeten, "Surgical technology and pharmacology of hyperthermic perioperative chemotherapy," Journal of Gastrointestinal Oncology, vol. 7, no. 1, p. 29, 2016.
    [19] E.-K. Lin, M.-C. Hsieh, C.-H. Chen, Y.-J. Lu, and S.-Y. Wu, "Outcomes of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal cancer with peritoneal metastasis," Medicine, vol. 95, no. 52, 2016.
    [20] M.-C. Hsieh, C.-Y. Lu, W.-W. Chang, S.-Y. Wu, P.-K. Hsiao, and T.-J. Liu, "Experiences with cytoreduction surgery plus hyperthermic intraperitoneal chemotherapy in Taiwan," Medicine, vol. 96, no. 26, 2017.
    [21] "Hyperthermic intraperitoneal chemotherapy." https://en.wikipedia.org/wiki/Hyperthermic_intraperitoneal_chemotherapy
    [22] D. Barata, C. van Blitterswijk, and P. Habibovic, "High-throughput screening approaches and combinatorial development of biomaterials using microfluidics," Acta biomaterialia, vol. 34, pp. 1-20, 2016.
    [23] N. Ye, J. Qin, W. Shi, X. Liu, and B. Lin, "Cell-based high content screening using an integrated microfluidic device," Lab on a Chip, vol. 7, no. 12, pp. 1696-1704, 2007.
    [24] C. Kim, J. Kasuya, J. Jeon, S. Chung, and R. D. Kamm, "A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs," Lab on a chip, vol. 15, no. 1, pp. 301-310, 2015.
    [25] Y. Fan, D. T. Nguyen, Y. Akay, F. Xu, and M. Akay, "Engineering a brain cancer chip for high-throughput drug screening," Scientific reports, vol. 6, no. 1, pp. 1-12, 2016.
    [26] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nature biotechnology, vol. 20, no. 8, pp. 826-830, 2002.
    [27] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high‐throughput cell‐based assays," Biotechnology and bioengineering, vol. 89, no. 1, pp. 1-8, 2005.
    [28] C. R. Kothapalli et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab on a Chip, vol. 11, no. 3, pp. 497-507, 2011.
    [29] R. J. Pomerantz and D. L. Horn, "Twenty years of therapy for HIV-1 infection," Nature medicine, vol. 9, no. 7, pp. 867-873, 2003.
    [30] K. Lee, C. Kim, G. Jung, T. S. Kim, J. Y. Kang, and K. W. Oh, "Microfluidic network-based combinatorial dilution device for high throughput screening and optimization," Microfluidics and Nanofluidics, vol. 8, no. 5, pp. 677-685, 2010.
    [31] M. C. Liu and Y.-C. Tai, "A 3-D microfluidic combinatorial cell array," Biomedical microdevices, vol. 13, no. 1, pp. 191-201, 2011.
    [32] J. Sun, W. Liu, Y. Li, A. Gholamipour-Shirazi, A. Abdulla, and X. Ding, "An on-chip cell culturing and combinatorial drug screening system," Microfluidics and Nanofluidics, vol. 21, no. 7, pp. 1-11, 2017.
    [33] K. Lee, C. Kim, and K. W. Oh, "Single-Layered Microfluidic Network-Based Combinatorial Dilution for Standard Simplex Lattice Design," Micromachines, vol. 9, no. 10, p. 489, 2018.
    [34] C.-Y. Lee, W.-T. Wang, C.-C. Liu, and L.-M. Fu, "Passive mixers in microfluidic systems: A review," Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
    [35] B. He, B. J. Burke, X. Zhang, R. Zhang, and F. E. Regnier, "A picoliter-volume mixer for microfluidic analytical systems," Analytical chemistry, vol. 73, no. 9, pp. 1942-1947, 2001.
    [36] V. Mengeaud, J. Josserand, and H. H. Girault, "Mixing processes in a zigzag microchannel: finite element simulations and optical study," Analytical chemistry, vol. 74, no. 16, pp. 4279-4286, 2002.
    [37] C.-C. Hong, J.-W. Choi, and C. H. Ahn, "A novel in-plane passive microfluidic mixer with modified Tesla structures," Lab on a Chip, vol. 4, no. 2, pp. 109-113, 2004.
    [38] 姚昀廷, "微型化細胞分析儀整合指動式微流體晶片應用於高黏滯度生物樣品之混合與沖洗。," 碩士論文, 國立清華大學動力機械工程學系, 臺灣博碩士論文知識加值系統, 2020. [Online]. Available: https://hdl.handle.net/11296/m5rp7m
    [39] J. Wang et al., "Efficient Mixing of Microfluidic Chip with a Three-Dimensional Spiral Structure," ACS omega, vol. 7, no. 1, pp. 1527-1536, 2021.
    [40] G. Mehta, A. Y. Hsiao, M. Ingram, G. D. Luker, and S. Takayama, "Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy," Journal of controlled release, vol. 164, no. 2, pp. 192-204, 2012.
    [41] K. Moshksayan et al., "Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture," Sensors and Actuators B: Chemical, vol. 263, pp. 151-176, 2018.
    [42] M. A. Hajari, S. Baheri Islami, and X. Chen, "A numerical study on tumor-on-chip performance and its optimization for nanodrug-based combination therapy," Biomechanics and Modeling in Mechanobiology, vol. 20, no. 3, pp. 983-1002, 2021.
    [43] Y.-C. Chen, X. Lou, Z. Zhang, P. Ingram, and E. Yoon, "High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures," Scientific reports, vol. 5, no. 1, pp. 1-12, 2015.
    [44] Y. Chen, D. Gao, H. Liu, S. Lin, and Y. Jiang, "Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening," Analytica chimica acta, vol. 898, pp. 85-92, 2015.
    [45] C. Holohan, S. Van Schaeybroeck, D. B. Longley, and P. G. Johnston, "Cancer drug resistance: an evolving paradigm," Nature Reviews Cancer, vol. 13, no. 10, pp. 714-726, 2013.
    [46] W. Zhang and P. Huang, "Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity," Cancer biology & therapy, vol. 11, no. 2, pp. 150-156, 2011.
    [47] I. V. Pinchuk and D. W. Powell, "Immunosuppression by intestinal stromal cells," Stromal Immunology, pp. 115-129, 2018.
    [48] Y. Yuan, Y.-C. Jiang, C.-K. Sun, and Q.-M. Chen, "Role of the tumor microenvironment in tumor progression and the clinical applications," Oncology reports, vol. 35, no. 5, pp. 2499-2515, 2016.
    [49] Y. Kitadai, "Cancer-stromal cell interaction and tumor angiogenesis in gastric cancer," Cancer Microenvironment, vol. 3, no. 1, pp. 109-116, 2010.
    [50] T. Liu et al., "Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy," Journal of hematology & oncology, vol. 12, no. 1, pp. 1-15, 2019.
    [51] I.-H. Ham, D. Lee, and H. Hur, "Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments," Journal of oncology, vol. 2019, 2019.
    [52] T. G. Ivanco, "Development and Validation of an Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles," Virginia Tech, 2009.
    [53] E. Fröhlich et al., "Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols," Toxicology in vitro, vol. 27, no. 1, pp. 409-417, 2013.
    [54] Y. Kuroda, S. Wakao, M. Kitada, T. Murakami, M. Nojima, and M. Dezawa, "Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells," Nature protocols, vol. 8, no. 7, pp. 1391-1415, 2013.
    [55] "CCK-8 protocol." https://www.dojindo.eu.com/TechnicalManual/Manual_CK04.pdf
    [56] J. Michels et al., "Cisplatin resistance associated with PARP hyperactivation," Cancer research, vol. 73, no. 7, pp. 2271-2280, 2013.
    [57] R. A. Alderden, M. D. Hall, and T. W. Hambley, "The discovery and development of cisplatin," Journal of chemical education, vol. 83, no. 5, p. 728, 2006.
    [58] N. G. Farha and A. Kasi, "Docetaxel," 2019.
    [59] M. Tomasz, "Mitomycin C: small, fast and deadly (but very selective)," Chemistry & biology, vol. 2, no. 9, pp. 575-579, 1995.
    [60] W. Bradner, "Mitomycin C: a clinical update," Cancer treatment reviews, vol. 27, no. 1, pp. 35-50, 2001.
    [61] J. Weinreich et al., "Chemosensitivity of various peritoneal cancer cell lines to HIPEC and PIPAC: comparison of an experimental duplex drug to standard drug regimens in vitro," Investigational New Drugs, vol. 37, no. 3, pp. 415-423, 2019.
    [62] L. Lemoine, P. Sugarbaker, and K. Van der Speeten, "Drugs, doses, and durations of intraperitoneal chemotherapy: standardising HIPEC and EPIC for colorectal, appendiceal, gastric, ovarian peritoneal surface malignancies and peritoneal mesothelioma," International Journal of Hyperthermia, vol. 33, no. 5, pp. 582-592, 2017.
    [63] D. Yuan et al., "Chikusetsu saponin V attenuates MPP+-induced neurotoxicity in SH-SY5Y cells via regulation of Sirt1/Mn-SOD and GRP78/caspase-12 pathways," International Journal of Molecular Sciences, vol. 15, no. 8, pp. 13209-13222, 2014.
    [64] J. Kriel et al., "Coordinated autophagy modulation overcomes glioblastoma chemoresistance through disruption of mitochondrial bioenergetics," in "Scientific reports," 2045-2322, 2018, vol. 8.
    [65] M. Chang et al., "A multifunctional cascade bioreactor based on hollow‐structured Cu2MoS4 for synergetic cancer chemo‐dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy," Advanced Materials, vol. 31, no. 51, p. 1905271, 2019.
    [66] Y. Guo, G. Wang, H. Zhang, H. Wen, and W. Li, "Effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs," Biotechnology for Biofuels, vol. 13, pp. 1-11, 2020.
    [67] S. Bolte and F. P. Cordelières, "A guided tour into subcellular colocalization analysis in light microscopy," Journal of microscopy, vol. 224, no. 3, pp. 213-232, 2006.
    [68] "Acquiring and Analyzing Data for Colocalization Experiments in AIM or ZEN Software." https://www.zeiss.com/content/dam/Microscopy/Downloads/Pdf/FAQs/zen-aim_colocalization.pdf
    [69] "HIPEC Surgery: Pediatric and Adult." https://www.beaumont.org/treatments/hyperthermic-intraperitoneal-chemotherapy

    QR CODE