簡易檢索 / 詳目顯示

研究生: 呂政諺
Lu, Cheng-Yen
論文名稱: 結合新型線波導與多模干涉耦合器製作光積電路
Integration of Silicon Photonic Wires and Multimode Interference Couplers
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 矽線波導多模干涉耦合器
外文關鍵詞: silicon photonic wire, multimode interference coupler
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高效率光波導為積體光學重要的基本元件,一種利用簡單的深蝕刻及氫鍛燒製程在Silicon-on-insulator(SOI)晶圓上所製作出的新型線波導,此新型線波導量測到傳播損耗及耦合損耗分別為1.26dB/cm、2.5dB/Coupler. 為了進一步以新型線波導為基本元件實現高度緊密的光積電路,利用多模干涉耦合器所具有的光分離與結合特性,且具有寬操作頻譜與極化的輸入光場不敏感的優點,並且在製程上有較大的可接受誤差範圍。在本論文,成功地將二維與三維的多模干涉耦合器(2-D and 3-D MMI couplers)、三維錐形光耦合器(3-D Taper couplers)、新型線波導(Silicon photonic wire) 在同步製程下利用矽原子表面遷移機制整合在同一晶片。在初步研究,將以分光比例為50:50與15:85作為研究。實驗結果,二維多模干涉耦合器設計分光比例50:50與15:85,在TE極化光場下,分別量測到分光比例為46:54與10:90,在TM極化光場下,分別量測到分光比例為48:52與13:87,並且在操作頻率的量測結果與BPM模擬分析有相同的趨勢。除此之外,對於三維多模干涉耦合器元件也有了初步的量測結果與分析。


    A novel low-loss silicon photonic wire with 3-D taper couplers fabricated on silicon-on-insulator (SOI) by the deep etching and the thermal annealing processes was presented. The propagation loss and the coupler loss were measured to be 1.26dB/cm and 2.5dB/coupler [10][11]. In order to realize highly compact photonic integrated circuits based on silicon photonic wires, multimode interference (MMI) couplers were introduced for performing light splitting and combing due to the advantages of wide optical bandwidth, polarization independence and large fabrication tolerance. In this thesis, we have demonstrated monolithically integrated 2-D and 3-D MMI couplers with the novel silicon photonic wires via self-profile transformation [14]. The power splitting ratios of 50:50 and 15:85 were designed for preliminary study. For the 50:50 and 15:85 2-D MMI devices, the power splitting ratios were measured to be 46:54 and 10:90 for TE-polarized, and 48:52 and 13:87 for TM-polarized. The wide optical bandwidth according to the BPM simulation was also proven experimentally by measuring 2-D MMI devices. The preliminary measurement results for 3-D MMI couplers were also presented.

    摘要 I Abstract II 致謝 III 目錄 V 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 4 第二章 理論背景 5 2.1 波導(Waveguide)原理 5 2.1.1 光波導結構與種類 5 2.1.2 平板波導 5 2.1.3 錐形光學耦合器(tapered coupler)原理 15 2.2多模干涉耦合器原理(Multimode interference coupler) 18 2.2.1自成像原理(Self-image principle) 18 2.2.2多模態波導(Multimode waveguide) 18 2.2.3 多模干涉耦合器分析 19 2.2.4 一般干涉(General interference) 23 2.2.5 限制干涉(Restricted interference) 27 2.3 三維多模干涉耦合器分析 29 2.3.1 三維多模干涉耦合器 29 2.3.2 多模干涉耦合器分析 30 2.3.3 多模干涉耦合器分析 33 2.4 BPM模擬二維與三維多模干涉耦合器之分析 37 2.4.1 BPM(Beam Propagation Method) 37 2.4.2 二維多模干涉耦合器模擬分析 39 2.4.3三維多模干涉耦合器模擬分析 48 第三章 元件設計與製作流程 57 3.1 元件結構設計 57 3.1.1二維多模干涉耦合器結合新型線波導 57 3.1.2三維多模耦合干涉器結合新型線波導 60 3.2 波導與多模干涉耦合器結合之製程 63 3.2.1 結合新型線波導與多模干涉耦合器製作流程 63 3.2.2 結合新型線波導與多模干涉耦合器製程說明 64 第四章 元件量測與分析 69 4.1 二維多模干涉耦合器分光比例量測 69 4.1.1 實驗架設與量測方法 69 4.1.2 實驗數據 71 4.1.3 結果與分析 73 4.2 二維多模干涉耦合器操作波段量測 75 4.2.1 實驗架設與量測方法 75 4.2.2 實驗數據 76 4.2.3 結果與分析 79 4.3 三維多模干涉耦合器量測 80 4.3.1 實驗架設與量測方法 80 4.3.2 實驗數據 81 4.3.3 結果與分析 81 第五章 結論 83 APPENDIX:結合新型線波導與多模干涉耦合器之新製作流程 85 參考文獻 92

    [1] Bahram Jalali, Mario Paniccia, and Graham Reed, "Silicon photonics," IEEE microwave magazine, 7(3):58-68, 2006.
    [2] Jalali, B. and S. Fathpour, "Silicon photonics," Journal of Lightwave Technology, 24(12): 4600-4615, 2006.
    [3] Lipson, M., "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," Journal of Lightwave Technology, 23(12): 4222-4238,2005.
    [4] Tien, P. K., "Light Waves in Thin Films and Integrated Optics," APPLIED OPTICS, Vol. 10, No. 11: p2395-p2413, 1971.
    [5] Fischer, U., T. Zinke, et al., "0.1 dB/cm waveguide losses in single-mode SOI rib waveguides," IEEE Photonics Technology Letters, 8(5): 647-648, 1996.
    [6] Jalali, B., P. D. Trinh, et al., "Guided-wave optics in silicon-on-insulator technology," IEEE Proceedings-Optoelectronics, 143(5): 307-311, 1996.
    [7] Lin, S. Y., J. G. Fleming, et al., "A three-dimensional photonic crystal operating at infrared wavelengths," Nature, 394(6690): 251-253, 1998.
    [8] McNab, S. J., N. Moll, et al., "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Optics Express, 11(22): 2927-2939, 2003.
    [9] Almeida, V. R., Q. F. Xu, et al., "Guiding and confining light in void nanostructure," Optics Letters, 29(11): 1209-1211, 2004.
    [10] Ming-Chang M. Lee, W.-C. C., Tse-Ming Yang, Chin-Hung Chen, and Ming C. Wu, "Low-Loss Silicon Wire Waveguides with 3-D Tapered Couplers Fabricated by Self Profile Transformation," The Conference on Lasers and Electro-Optics, 2006.
    [11] Ming-Chang M. Lee, Wei-Chao Chiu, Tse-Ming Yang, Chin-Hung Chen, "Monolithically integrated low-loss silicon photonic wires and 3-D tapered couplers fabricated by self-profile transformation," Applied Physics Letters, Vol. 91,191114, 2007.
    [12] 邱威超、楊哲銘、陳信宏、李明昌,"次微米矽光子線-非線性光學特性的應用與發展",奈米通訊,第15卷.第2期.頁次15, 2008年6月。
    [13] 李明昌、邱威超、楊哲銘、陳信宏,"利用表面原子遷移機制應用於製作矽微奈米光學元件",科儀新知,第29卷.第4期.頁次38,2008年2月。
    [14] Lee, M. C. M. and M. C. Wu, "Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction," Journal of Microelectromechanical Systems, 15(2): 338-343, 2006.
    [15] Jerry I. Dadap, Richard L. Espinola, and Richard M. Osgood, Jr., "Spontaneous Raman scattering in ultrasmall silicon waveguides," Optics Letters, Vol. 29, No. 23, 2004.
    [16] Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Jun-ichi Takahashi, Hiroshi Fukuda, Mitsutoshi Takahashi, Tetsufumi Shoji, Shingo Uchiyama, Emi Tamechika, Sei-ichi Itabashi, and Hirofumi Morita, "Silicon Wire Waveguiding System: Fundamental Characteristics and Applications," Electronics and Communications in Japan, Part 2, Vol. 89, No. 3, 2006.
    [17] L.B. Soldano and E. C. M. Pennings, "OPTICAL MULTIMODE INTERFERENCE DEVICES BASED ON SELF-IMAGING - PRINCIPLES AND APPLICATIONS", Journal of Lightwave Technology, vol. 13, pp. 615-627, Apr 1995.
    [18] K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, "Adiabatic and multimode interference couplers on silicon-on-insulator," IEEE Photonics Technology Letters, vol. 18, pp. 2287-2289, Nov-Dec 2006.
    [19] Richard Syms John Cozens, "Optical guide wave and devices," New York, Mcgraw-Hill, 1992.
    [20] Divid K. Cheng, 1989. "Field and Wave Electromagnetic 2/E," Addison Wesley Longman Press.
    [21] Okamoto K. 2006. "Fundamentals of Optical Waveguides 2/E," Academic Press.
    [22] Liu, J. M., "Photonic Devices," Cambridge University Press, 2005.
    [23] Osamu Mitomi, Kazuo Kasaya and Hiroshi Miyazawa, "Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling," IEEE Journal of selected topics in Quantum Electronics, vol. 30, no. 8, pp. 1787-1793, 1994.
    [24] Kazuo Kasaya, Osamu Mitomi, Mitsuru Naganuma, Yasuhiro Kondo and Yoshio Noguchi, "A Simple Laterally Taper Waveguide for Low-Loss Coupling to Single-Mode Fiber," IEEE Photonic Technology Latter, vol. 5, no. 3,pp. 345-347, 1993.
    [25] Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett., vol. 55,pp. 2389-2391, 1989.
    [26] H. F. Talbot, "Facts relating to optical science No. IV," London, Edinburgh Philosophical Mag., J. Sci., vol. 9, pp. 401407, Dec. 1836.
    [27] D. Marcuse, "Light Transmission Optics," New York: Van Nostrand Reinhold, 1972.
    [28] 0. Bryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Amer., vol. 63, no. 4, pp. 41-19, 1973.
    [29] R. Ulrich, "Image formation by phase coincidences in optical waveguides," Optics Commun., vol. 13, no. 3, pp. 259-264, 1975.
    [30] M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N x N multi-mode interference couplers including phase relations," Appl. Opt., vol. 33, no. 17, pp. 3905-3911, 1994.
    [31] D. Khalil and A. Yehia, "Two-dimensional multimode interference in integrated optical structures," J. Opt. A: Pure Appl. Opt., vol. 6, pp. 137–145, 2004.
    [32] A. Yehia and D. Khalil, "Design of a compact three-dimensional multimode interference phased array structures (3-d MMI PHASAR) for DWDM applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 444-451, 2005.
    [33] M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, "3-D photonic circuit technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 935-942, 2002.
    [34] Wei-Chao Chiu, Cheng-Yen Lu, Ming-Chang M. Lee, "Monolithic integration of three-dimensional multimode interference couplers with silicon photonic wires via self-profile transformation", 5th International Conference on Group IV Photonics, ThB4, Sorrento, Italy, Sep. 2008.
    [35] Rsoft Design Group, BeamPROP user menu, Chapter 1, pp. 4-21.
    [36] M.-K. Chin, C.-L. Xu, and W.-P. Huang, "Theoretical approach to a polarization-insensitive single-mode microring resonator," Opt. Exp., vol.12, pp. 3245–3250, 2004.
    [37] R. Hanfoug, L. M. Augustin, Y. Barabarin, J.J.G.M. van der Tol, E.A.J. M. Bente, F. Karouta, D. Rogers, S. Cole, Y. S. Oei, X.J.M. Leijtens and M. K. Smit, "Reduced reflections from multimode interference couplers," Electron. Lett. 42, 465-466, 2006.
    [38] D.-X. Xu, S. Janz and P. Cheben, "Design of polarization-insensitive ring resonators in SOI using cladding stress engineering and MMI Couplers," Photon. Technol. Lett. 18, 343-345, 2006.
    [39] Dan-Xia Xu, Adam Densmore, Philip Waldron, Jean Lapointe, Edith Post, André Delâge, Siegfried Janz, Pavel Cheben, Jens H. Schmid, and Boris Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Optics Express, Vol. 15, Issue 6, pp. 3149-3155, 2007.
    [40] X. L. Jia, S. Q. Luo, and X. H. Cheng, "Design and optimization of novel ultra-compact SOI multimode interference optical switch," Optics Communications, vol. 281, pp. 1003-1007, 2008.
    [41] S. L. Tsao, H. C. Guo, and C. W. Tsai, "A novel 1 x 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide," Optics Communications, vol. 232, pp. 371-379, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE