研究生: |
余奕儒 Yu, Yi-Ju |
---|---|
論文名稱: |
以步進式掃描時間解析傅立葉轉換紅外光譜術偵測苯基陸森紅酯(Roussin’s red benzyl ester) 在不同溶劑環境中之光解反應 Photolyses of Roussin’s red benzyl ester in different solvents monitored with step-scan time-resolved Fourier-transform infrared spectroscopy |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
陳益佳
Chen, I-Chia 尤禎祥 Yu, Jen-Shiang K |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 步進式掃描時間解析傅立葉轉換紅外光譜術 、陸森紅酯 、溶劑配位作用 、光致釋放一氧化氮載體 |
外文關鍵詞: | step-scan time-resolved Fourier-transform infrared spectroscopy, Roussin’s red ester, coordination, photo-release NO donor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
吾人利用步進式時間解析紅外光譜儀量測Fe2(μ-SPh)2(NO)4在不同溶劑環境中以355 nm脈衝雷射激發之時間解析紅外差異吸收光譜。其溶劑組成分別為純環己烷(cHex)、環己烷與四氫呋喃體積比2:1 (cHex/THF=2/1)混合溶劑以及環己烷與二噁烷體積比2:1 (cHex/DX=2/1)混合溶劑。搭配密度泛函理論BP86方法與基底函數def2-TZVP計算相關物種中屬於一氧化氮的振動波數與紅外吸收強度,吾人得以指認Fe2(μ-SPh)2(NO)4在不同溶液中的光解中間物。在光照瞬間使起始物消逝並造成在1785與1760 cm-1負值差異吸收峰,且產生光解中間物及其差異吸收峰的貢獻則依溶劑環境而不同。在純環己烷中,吾人由在1805 cm-1的正值吸收峰指認為Fe2(μ-SPh)2(NO)3的生成;在cHex/THF=2/1混合溶劑中,透過在1738與1717 cm-1正值差異吸收峰指認溶劑配位的中間物Fe2(μ-SPh)2(NO)3(THF);在cHex/DX=2/1混合溶劑,類似正值差異吸收峰在1740與1718 cm-1則可指認為Fe2(μ-SPh)2(NO)3(DX)。在不同溶劑中觀察到不同光解中間物可指出溶劑的功能不同:環己烷屬於弱作用力溶劑只以溶劑化穩定中間物,而四氫呋喃與二噁烷具有提供電子對的氧原子,故能夠配位到Fe2(μ-SPh)2(NO)4釋出NO後產生的空位形成溶劑配位的中間物。吾人的研究除了解陸森紅酯(Roussin’s red ester,Fe2(μ-SR)2(NO)4)這類光致釋放一氧化氮載體的光化學反應,另一方面說明由溶劑結構預測溶劑以溶解化或配位作用穩定光解中間物,並能夠協助預測有機光化學反應的機制。
Photolysis of Roussin's red benzyl ester, Fe2(μ-SPh)2(NO)4, upon exposure to 355 nm pulsed laser in different solvents, including cyclohexane (cHex), tetrahydrofuran (THF), and 1,4-dioxane (DX), was monitored with time-resolved step-scan Fourier-transform infrared spectrometer. Coupled with the predictions by density functional theory BP86 with the basis set def2-TZVP, we are able to differentiate the nitric oxide (NO) associated vibrational wavenumbers of these photolyzed transient intermediates. The pulsed excitation results in an instantaneous bleaching of Fe2(μ-SPh)2(NO)4 at 1785 and 1760 cm–1, followed by different cascading intermediates when the solvents are changed. In cyclohexane, Fe2(μ-SPh)2(NO)3 can be partially characterized at 1805 cm–1 which is not overlapped with the parent depletion. In binary solvent of cHex/THF=2/1, however, two redshifted un-overlapped bands at 1738 and 1717 cm–1 were observed and assigned to the THF-coordinated species, Fe2(μ-SPh)2(NO)3(THF). In cHex/DX=2/1, two bands of Fe2(μ-SPh)2(NO)3(DX) at 1740 and 1718 cm–1 were observed. The different transient intermediates upon excitation of the same precursor in different solvents suggested the intrinsic coordination capability of solvents. Cyclohexane can be treated as non-strongly interactive medium to solvate the transient species, whereas THF and DX which contain lone pair electrons can serve as electron donor to occupy the vacancy due to the loss of NO. To summarize our work, we provide the direct evidence to treat the solvents as a part of reactants which are able to coordinate the intermediates in different configurations in the photolysis of Roussin’s red esters (Fe2(μ-SR)2(NO)4). Moreover, our observation provides the predictable selectivity in the photo-organic synthesis. On the other hand, the photochemistry of Roussin’s red esters and the photo-release nitric oxide carriers are better understood.
第一章
[1] Culotta, E.; Koshland, D. E. J. Science 1992, 258, 1862-1864.
[2] "Physiology or Medicine for 1998 - Press Release". Nobelprize.org. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1998/press.html.
[3] Förstermann, U.; Sessa, W. C. Eur. Heart J. 2012, 33, 829-837.
[4] Nava-Ruiz C.; Méndez-Armenta M.; Ríos C. J. Mol. Hist. 2012, 43, 553-563.
[5] Wang, Y.; Zhou, Z.; Leylek, T.; Tan, H.; Sun, Y.; Parkinson, F. E.; Wang, J.-F. Neuroscience 2015, 311, 374-381.
[6] Reeves, S. R.; Simakajornboon, N.; Gozal, D. Respir. Physiol. Neurobiol. 2008, 164, 143-150.
[7] Jaffrey, S. R.; Snyder, S. H. Annu. Rev. Cell. Dev. Biol. 1995, 11, 417-440.
[8] Lei, S.Z.; Pan, Z.-H.; Aggarwal, S. K.; Chen, H.-S. V.; Hartman, J.; Sucher, N. J.; Lipton, S. A. Neuron 1992, 8, 1087-1099.
[9] Bogdan, C. Trends Immunol. 2015, 36, 161-178.
[10] Bronte, V.; Serafini, P.; Mazzoni, A.; Segal, D. M.; Zanovello, P. Trends Immunol. 2003, 24, 301-305.
[11] Bogdan, C. Nat. Immunol. 2001, 2, 970-916.
[12] Bruckdorfer, R. Mol. Aspects Med. 2005, 26, 3-31.
[13] Ignarro, L. J. Angew. Chem. Int. Ed. 1999, 98, 1882-1892.
[14] Iyer, A. K. V.; Rojanasakul Y.; Azad, N. Nitric Oxide 2014, 42, 9-18.
[15] Ushmorov, A.; Ratter, F.; Lehmann, V.; Dröge, W.; Schirrmacher, V.; Umansky, V. Blood 1999, 93, 2342-2352.
[16] Fukumura, D.; Kashiwagi, S.; Jain, R. K. Nat. Rev. Cancer 2006, 6, 521-534.
[17] Xu, W.; Liu, L. Z.; Loizidou, M.; Ahmed, M.; Charles, I. G Cell Res. 2002, 12, 311-320.
[18] Katusic, Z. S. Circ. Res. 2007, 101, 640-641.
[19] Herrera, M. D.; Mingorance, C. Rodríguez-Rodríguez R.; Alvarez de Sotomayor, M. Ageing Res. Rev. 2010, 9, 142-152.
[20] Ridnour, L. A.; Thomas, D. D.; Switzer, C.; Flores-Santana, W.; Isenberg, J. S.; Ambs, S.; Roberts, D. D.; Wink, D. A. Nitric Oxide 2008, 19, 73-76.
[21] Thomas, D. D.; Espey, M. G.; Ridnour, L. A.; Hofseth, L. J.; Mancardi, D.; Harris, C. C.; Wink, D. A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8894-8899.
[22] Kumar. S.; Singh, R. K.; Bhardwaj, T.R. Biomed. Pharmacother. 2017, 85, 182-201.
[23] Kao, P.-T.; Lee, I-J.; Liau I; Yeh, C.-S. Chem. Sci. 2017, 8, 291-297.
[24] Sortino, S. Chem. Soc. Rev. 2010, 39, 2903-2913.
[25] Riccio, D. A.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3731-3714.
[26] Pavlos, C. M.; Xu, Hua; Toscano, J. P. Free Radic. Biol. Med. 2004, 37, 745-752.
[27] Frost, M. C.; Reynolds, M. M.; Meyerhoff, M. E. Biomaterials 2005, 26, 1685-1693.
[28] Horinouchi, T.; Nakagawa, H.; Suzuki, T.; Fukuhara, K.; Miyata, N. Bioorg. Med. Chem. Lett. 2011, 21, 2000-2002.
[29] Ieda, N.; Hotta, Y.; Miyata, N.; Kimura, K.; Nakagawa, H. J. Am. Chem. Soc. 2014, 136, 7085-7091.
[30] Zhang, Z.; Wu, J.; Shang, Z.; Wang, C.; Cheng, J.; Qian, X.; Xiao, Y.; Xu, Z.; Yang, Y. Anal. Chem. 2016, 88, 7274-7280.
[31] Pierri, A. E.; Muizzi, D. A.; Ostrowski, A. D.; Ford, P. C. Struct. Bond 2015, 165, 1-46.
[32] Ford, P. C. Nitric Oxide 2013, 34, 56-64.
[33] Ostrowski, A. D.; Absalonson, R. O.; De Leo, M. A.; Wu, G.; Pavlovich, J. G.; Adamson, J.; Azhar, B.; Iretskii, A. V.; Megson, I. L.; Ford, P. C. Inorg. Chem. 2011, 50, 4453-4462.
[34] DeRosa, F.; Bu, X.; Ford, P. C. Inorg. Chem. 2005, 44, 4157-4165.
[35] Oliveira F. S.; Ferreira, K. Q.; Bonaventura, D.; Bendhack, L. M.; Tedesco, A. C.; Machado, S. P.; Tfouni, E.; da Silva, R. S. J. Inorg. Biochem. 2007, 101, 313-320.
[36] Bordini, J.; Hughes, D. L.; Neto, J. D. D.; da Cunha, C. J. Inorg. Chem. 2002, 41, 5410-5416.
[37] Bourassa, J.; DeGraff, W.; Kudo, S.; Wink, D. A.; Mitchell, J. B.; Ford, P. C. J. Am. Chem. Soc. 1997, 119, 2853-2860.
[38] Reddy, D.; Lancaster Jr. J. R.; Cornforth, D. P. Science 1983, 221, 769-770.
[39] Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15602-15610.
[40] Yukl, E. T.; Elbaz, M. A.; Nakano, M. M.; Moёnne-Loccoz, P. Biochemistry 2008, 47, 13084-13092.
[41] Tinberg, C. E.; Tonzetich, Z. J.; Wang. H.; Do, L. H.; Yoda, Y.; Cramer, S. P.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 18168-18176.
[42] Crack, J. C.; Green, J.; Thomson, A. J.; Le Brun, N. E. Acc. Chem. Res. 2014, 47, 3196-3205.
[43] Conrado, C. L.; Bourassa, J. L.; Egler, C.; Wecksler, S.; Ford, P. C. Inorg. Chem. 2003, 42, 2288-2293.
[44] Wecksler, S.; Mikhailovsky, A.; Ford, P. C. J. Am. Chem. Soc. 2004, 126, 13566-13567.
[45] Wecksler, S. R.; Mikhailovsky, A.; Korystov, D.; Buller, F.; Kannan, R.; Tan, L.-S.; Ford, P. C. Inorg. Chem. 2007, 46, 395-402.
[46] Chen, Y.-J.; Ku, W.-C.; Feng, L.-T.; Tsai, M.-L.; Hsieh, C.-H.; Hsu, W.-H.; Liaw, W.-F.; Hung, C.-H.; Chen, Y.-J. J. Am. Chem. Soc. 2008, 130, 10929-10938.
[47] Reichardt, C. Org. Process Res. Dev. 2007, 11, 105-113.
[48] Lakovicz, J. R. Principles of Fluorescence Spectroscopy, 3rd.; Springer, 2006.
[49] Gemeda, F. T. Chem. Sci. Int. J. 2017, 18, 1-12.
[50] Cook, G.; Feltman, P. M. J. Chem. Educ. 2007, 84, 1827-1829.
[51] Church, S. P.; Grevels, F.-W.; Hermann, H.; Schaffner, K. Inorg. Chem. 1985, 24, 418-422.
[52] Portius, P.; Yang, J.; Sun, X.-Z.; Grills, D. C.; Matousek, P.; Parker, A. W.; Towrie, M.; George, M. W. J. Am. Chem. Soc. 2004, 126, 10713-10720.
[53] Gittermann, S. M.; Letterman, R. G.; Jiao, T.; Leu, G.-L.; DeYonker, N. J.; Webster, C. E.; Burkey, T. J. J. Phys. Chem. A 2011, 115, 9004-9013.
[54] Mallat, T.; Baiker, A. Catal. Sci. Technol. 2011, 1, 1572-1583.
[55] Maphoru, M. V.; Heveling, J.; Pillai, S. K. Eur. J. Org. Chem. 2016, 331-337.
[56] Rood, J. A.; Landis, A. M.; Forster, D. R.; Goldkamp, T.; Oliver, A. G. Acta Cryst. 2016, 72, 990-996.
[57] Hermann, H.; Grevels, F.-W.; Henne, A.; Schaffner, K. J. Phys. Chem. 1982, 86, 5151-5154.
[58] Manton, J. C.; Amirjalayer, S.; Coleman, A. C.; McMahon, S.; Harvey, E. C.; Greetham, G. M.; Clark, I. P.; Buma, W. J.; Woutersen, S.; Pryce, M. T.; Long, C. Dalton Trans. 2014, 43, 17797-17805.
[59] Mori, S.; Takubo, M.; Yanase, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Adv. Synth. Catal. 2010, 352, 1630-1634.
[60] Ngan, N. K.; Lo, K. M.; Wong, C. S. R. Polyhedron 2011, 30, 2922-2932.
[61] Pereira, J. C. M.; Iretskii, A. V.; Han, R.-M.; Ford, P. C. J. Am. Chem. Soc. 2015, 137, 328-336.
第二章
[1] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques; Elsevier, 2005.
[2] Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing; Wiley-VCH, 2005.
[3] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy; Wiley-VCH, 2011.
[4] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectroscopy, 2nd.; Wiley, 2007.
[5] Fellgett, P. B. J. Phys. Radium 1958, 19, 187-191.
[6] Jacquinot, P. Rep. Progr. Phys. 1960, 23, 267-312.
[7] Connes, J.; Connes, P. J. Opt. Soc. Am. 1966, 56, 896-910.
[8] Chu, L.-K.; Lee, Y.-P. Instruments Today 2009, 31, 27-35.
[9] Mertz, L. Transformations in Optics; Wiley, 1965.
[10] Mertz, L. Infrared Phys. 1967, 7, 17-23.
[11] Jiang, E. Y. Advanced FT-IR Spectroscopy; Thermo Electron Corporation, 2003.
[12] Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Appl. Spectrosc. 1991, 45, 390-397.
[13] Hartland, G. V.; Qin, D.; Dai, H.-L. J. Chem. Phys. 1994, 100, 7832.
[14] Yeh, P.-S.; Leu, G.-H.; Lee, Y.-P.; Chen, I.-C. J. Chem. Phys. 1995, 103, 4879.
[15] Hu, X.; Frei, H.; Spiro, T. G. Biochemistry 1996, 35, 13001-13005.
[16] Huang, C.-Y.; Getahun, Z.; Wang, T.; DeGrado, W. F.; Gai, F. J. Am. Chem. Soc. 2001, 123, 12111-12112.
[17] Vasenkov, S.; Frei, H. J. Phys. Chem. A 2000, 104, 4327-4332.
[18] Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem., 2006, 45, 6041-6047.
[19] Lo, F.-C.; Li, Y.-W.; Hsu, I.-J.; Chen, C.-H.; Liaw, W.-F. Inorg. Chem., 2014, 53, 10881-10892.
[20] Weisstein, Eric W. "Apodization Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ApodizationFunction.html.
第三章
[1] Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
[2] Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
[3] Feller, D. J. Comput. Chem. 1996, 17, 1571-1586.
[4] Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045-1052.
[5] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
[6] Dunlap, B. I. J. Chem. Phys. 1983, 78, 3140-3142.
[7] Dunlap, B. I. J. Mol. Struct. 2000, 529, 37-40.
[8] Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
[9] Bauernschmitt, R.; Ahlrichs R. J. Chem. Phys. 1996, 104, 9047-9052.
[10] Schlegel, H. B.; McDouall J. J. Computational Advances in Organic Chemistry: Molecular Structure and Reactivity, Ed. Ögretir C.; Csizmadia I. G.; Kluwer Academic, The Netherlands, 1991, 167-185.
[11] Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
第四章
[1] Jaworska, M.; Stasicka, Z. New J. Chem. 2005, 29, 604-612.
[2] Lu, T.-T.; Lai, S.-H.; Li, Y.-W; Hsu, I-J.; Jang, L.-Y.; Lee, J.-F.; Chen I-C.; Liaw, W.-F. Inorg. Chem. 2011, 50, 5396-5406.
[3] Conrado, C. L.; Bourassa, J. L.; Egler, C.; Wecksler, S.; Ford, P. C. Inorg. Chem. 2003, 42, 2288-2293.
[4] Paur-Afshari, R.; Lin, J.; Schultz, R. H. Organometallics 2000, 19 1682-1691.
[5] Chiang, C.-Y.; Miller M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867-10874.