簡易檢索 / 詳目顯示

研究生: 陳傳安
Chen, Chuan-An
論文名稱: 可應用於雙向掃頻之新型非線性振動獵能器
A New Nonlinear Vibration Energy Harvester Applicable to Bidirectional Frequency Sweep
指導教授: 田孟軒
Tien, Meng-Hsuan
口試委員: 宋震國
Sung, Cheng-Kuo
王怡仁
Wang, Yi-Ren
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 振動獵能器吸引子非線性振動
外文關鍵詞: Vibration Energy Harvester, Stable Attractors, Nonlinear Vibration
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 振動獵能器為透過換能器將結構振動能量轉換為電能之綠色能源系統,為近年振動及能源領域之熱門研究主題。傳統的振動獵能系統因採用線性系統進行設計,因此僅有在操作於系統的自然頻率時才可發揮獵能效能。為了增廣獵能頻寬,過去已有許多研究使用非線性系統進行獵能器開發。然而,由於非線性系統具有多個穩態振動週期解,現有的非線性獵能器僅有在受到向上掃頻(frequency sweep-up)的激振條件時可發揮良好的發電效益,當系統受到向下掃頻激振時,獵能器的系統動態將收斂至振幅較小的週期解而使有效頻寬大幅縮小,因而降低非線性獵能器的實務應用價值。為了使振動獵能系統於各種掃頻條件下皆可保有增廣的獵能頻寬,本論文提出一種新型的非線性振動獵能系統,此新設計能使獵能器於向下掃頻(frequency sweep-down)時觸發非線性跳躍現象,並強迫系統動態收斂至大振幅的非線性週期解,使非線性振動獵能器能同時適應向上掃頻及向下掃頻的激振環境。本研究對此新型非線性振動獵能器進行數值模擬和實驗驗證,並提供振動獵能器的參數設計指南。


    Vibration energy harvesters are green energy systems that convert structural vibration energy into electrical energy through transducers. It has become a hot research topic in the field of vibration and energy in recent years. Traditional vibration energy harvesting systems are designed with a linear system, so energy harvest performance can only be achieved when operating at the natural frequency of the system. In order to extend the energy harvesting bandwidth, there have been many studies in the past using nonlinear systems for the development of energy harvesting devices. However, since the nonlinear system has more than one stable attractors, the existing nonlinear energy harvesters can only exert good power generation efficiency when they are subjected to up-sweep excitation conditions. When the system is subjected to down-sweep excitation conditions, the system dynamics of the energy harvesting device will converge to an attractor with a smaller amplitude, which will greatly reduce the effective bandwidth, thus reducing the practical application value of the nonlinear energy harvesting device. In order to make the vibration energy harvesting system maintain an extended energy harvesting bandwidth under various frequency sweep conditions, this paper proposes a new type of nonlinear vibration energy harvesting system. This new design enables the broadband energy harvesting in both the up-sweep and down-sweep excitation conditions by using a trigger mechanism that forces the system to jump to the large-amplitude vibration at a specific excitation frequency. In this study, the numerical simulation and experimental verification of this new nonlinear vibration energy harvesting device are carried out, and the parameter design guideline of the vibration energy harvesting device is provided.

    中文摘要-----------------------------------------I 英文摘要-----------------------------------------II 誌謝---------------------------------------------IV 圖目錄-------------------------------------------VII 表目錄-------------------------------------------X 符號列表-----------------------------------------XI 第一章 緒論--------------------------------------1 1.1 簡介-----------------------------------------1 1.2 研究背景-------------------------------------1 1.2.1 陣列式獵能器-------------------------------2 1.2.2 加入控制-----------------------------------2 1.2.3 非線性獵能器-------------------------------3 1.3 研究目標與論文架構---------------------------5 第二章 研究方法----------------------------------6 2.1 物理模型及運動方程式-------------------------6 2.2 系統響應------------------------------------14 2.3 參數設計------------------------------------20 2.3.1 第一振盪子之非線性共振頻率------------------20 2.3.2 參數設計流程-------------------------------30 第三章 研究結果----------------------------------32 3.1 數值積分及系統響應---------------------------33 3.1.1 傳統非線性獵能系統-------------------------33 3.1.2 吸引盆地圖--------------------------------36 3.1.3 新型非線性獵能系統之響應-------------------41 3.1.4 參數掃描----------------------------------44 3.2 線性、傳統非線性及新型非線性獵能器之實驗驗證---51 3.2.1 線性獵能系統------------------------------51 3.2.2 傳統非線性獵能器實驗-----------------------54 3.2.3 新型非線性獵能器實驗-----------------------56 3.2.4 參數掃描之實驗驗證-------------------------63 第四章 結論與未來展望----------------------------67 參考文獻----------------------------------------69 附錄--------------------------------------------73

    1. Paradiso, J.A. and T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive computing, 2005. 4(1): p. 18-27.
    2. Sharma, P.K. and P.V. Baredar, Analysis on piezoelectric energy harvesting small scale device–a review. Journal of King Saud University-Science, 2019. 31(4): p. 869-877.
    3. Ilyas, A., et al., Wave electrical energy systems: Implementation, challenges and environmental issues. Renewable and Sustainable Energy Reviews, 2014. 40: p. 260-268.
    4. Aderinto, T. and H. Li, Ocean wave energy converters: Status and challenges. Energies, 2018. 11(5): p. 1250.
    5. Williams, C. and R.B. Yates, Analysis of a micro-electric generator for microsystems. sensors and actuators A: Physical, 1996. 52(1-3): p. 8-11.
    6. Arnold, D.P., Review of microscale magnetic power generation. IEEE Transactions on magnetics, 2007. 43(11): p. 3940-3951.
    7. Glynne-Jones, P., et al., An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical, 2004. 110(1-3): p. 344-349.
    8. Mitcheson, P.D., et al., MEMS electrostatic micropower generator for low frequency operation. Sensors and Actuators A: Physical, 2004. 115(2-3): p. 523-529.
    9. Renzi, E., Hydroelectromechanical modelling of a piezoelectric wave energy converter. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016. 472(2195): p. 20160715.
    10. Roundy, S., P.K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Computer communications, 2003. 26(11): p. 1131-1144.
    11. Jeon, Y., et al., MEMS power generator with transverse mode thin film PZT. Sensors and Actuators A: Physical, 2005. 122(1): p. 16-22.
    12. Wei, C. and X. Jing, A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 2017. 74: p. 1-18.
    13. Dutoit, N.E., B.L. Wardle, and S.-G. Kim, Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated ferroelectrics, 2005. 71(1): p. 121-160.
    14. DuToit, N.E. and B.L. Wardle, Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA journal, 2007. 45(5): p. 1126-1137.
    15. Erturk, A. and D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of vibration and acoustics, 2008. 130(4).
    16. Meninger, S., et al. Vibration-to-electric energy conversion. in Proceedings of the 1999 international symposium on Low power electronics and design. 1999.
    17. Poulin, G., E. Sarraute, and F. Costa, Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system. Sensors and Actuators A: physical, 2004. 116(3): p. 461-471.
    18. Xiao, Z., et al., Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Applied Physics Letters, 2014. 104(22): p. 223904.
    19. Sari, I., T. Balkan, and H. Kulah, An electromagnetic micro power generator for wideband environmental vibrations. Sensors and Actuators A: Physical, 2008. 145: p. 405-413.
    20. Ferrari, M., et al., Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors and Actuators A: Physical, 2008. 142(1): p. 329-335.
    21. Ching, N.N., et al., A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sensors and Actuators A: Physical, 2002. 97: p. 685-690.
    22. Chew, Z. and L. Li, Design and characterisation of a piezoelectric scavenging device with multiple resonant frequencies. Sensors and Actuators A: Physical, 2010. 162(1): p. 82-92.
    23. Liu, H., et al., An electromagnetic MEMS energy harvester array with multiple vibration modes. Micromachines, 2015. 6(8): p. 984-992.
    24. Zhu, D., M.J. Tudor, and S.P. Beeby, Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology, 2009. 21(2): p. 022001.
    25. Eichhorn, C., et al., A smart and self-sufficient frequency tunable vibration energy harvester. Journal of Micromechanics and Microengineering, 2011. 21(10): p. 104003.
    26. Challa, V.R., et al., A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 2008. 17(1): p. 015035.
    27. Tien, M.-H. and K. D’Souza, Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters. Proceedings of the Royal Society A, 2020. 476(2233): p. 20190491.
    28. Ayala-Garcia, I.N., et al., A tunable kinetic energy harvester with dynamic over range protection. Smart materials and structures, 2010. 19(11): p. 115005.
    29. Erturk, A. and D.J. Inman, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. Journal of Sound and Vibration, 2011. 330(10): p. 2339-2353.
    30. Cao, J., et al., Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters. Journal of Vibration and Acoustics, 2015. 137(2).
    31. Hu, Y., et al., Nonlinear behavior of a piezoelectric power harvester near resonance. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006. 53(7): p. 1387-1391.
    32. Xue, H. and H. Hu, Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2008. 55(9): p. 2092-2096.
    33. Soliman, M.S., et al., A design procedure for wideband micropower generators. Journal of Microelectromechanical Systems, 2009. 18(6): p. 1288-1299.
    34. Le, C.P. and E. Halvorsen, MEMS electrostatic energy harvesters with end-stop effects. Journal of Micromechanics and Microengineering, 2012. 22(7): p. 074013.
    35. Ramlan, R., et al., Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear dynamics, 2010. 59: p. 545-558.
    36. Quinn, D.D., et al., Comparing linear and essentially nonlinear vibration-based energy harvesting. Journal of vibration and acoustics, 2011. 133(1).
    37. Gürgöze, M., On the representation of a cantilevered beam carrying a tip mass by an equivalent spring–mass system. Journal of sound and vibration, 2005. 282(1-2): p. 538-542.
    38. Tai, W.-C. and L. Zuo, On optimization of energy harvesting from base-excited vibration. Journal of Sound and Vibration, 2017. 411: p. 47-59.
    39. 李庚諺, 開發廣義雙線性頻率估測法以分析非平滑振動系統之共振頻率, in 動力機械工程學系. 2022, 國立清華大學.
    40. Londoño, J.M., S.A. Neild, and J.E. Cooper, Identification of backbone curves of nonlinear systems from resonance decay responses. Journal of Sound and Vibration, 2015. 348: p. 224-238.
    41. Dormand, J.R. and P.J. Prince, A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics, 1980. 6(1): p. 19-26.

    QR CODE