研究生: |
蔡立軒 Tsai, Li-Shiuan |
---|---|
論文名稱: |
氧氮化鉿介電層於五苯環有機薄膜電晶體之特性探討 Nitrogen incorporated Hafnium Dioxide dielectric thin film For Organic Thin Film Transistors |
指導教授: |
黃振昌
Hwang, Jenn-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 有機薄膜電晶體 、氧氮化鉿 、五苯環 、閘極介電層 |
外文關鍵詞: | OTFT, HfON, pentacene, gate dielectric |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鉿為高介電係數(high-K)之介電層材料,其理論介電係數約為25,利用此高介電常數之薄膜作為閘極介電層可以降低操作電壓並且縮小元件尺寸,符合未來低耗能和微電子元件製作。有機薄膜電晶體(Organic thin film transistors)主要應用於軟性電子元件上,而作為主動層(Active layers)的有機薄膜有很多種類,而本研究中使用的五苯環(Pentacene)是普遍被應用在OTFTs元件上的有機薄膜主動層之一 。
本研究中的試片製備為使用Hf的靶材,並以射頻反應式磁控濺鍍系統(RF Reactive Magnetron Sputter System) 在製程中利用質流控制器(Mass Flow Controller)來控制 Ar、O2、N2的流量來成長氧氮化鉿以及二氧化鉿介電層薄膜,再比較不同參數下二氧化鉿薄膜以及氧氮化鉿薄膜並探討二者之薄膜性質。在沉積氮氧化鉿介電層前,先沉積一層快閃金屬層,可以有效降低介電層的平整度,在相同製程條件下,表面粗糙度從沒有快閃金屬層的 Ra=1.972nm 降低到有快閃金屬層的Ra=1.414nm,藉此可以提升元件特性,載子遷移率從0.086 cm2/V.s 提升到0.174 cm2/V.s,起始電壓從-0.7V 降低到-0.31V,Ion/Ioff 從 0.9x103 提升到 3.2x103,S.S.更是從-0.368 V/dec降低到-0.209 V/dec。實驗結果顯示,在表面能較低的氮氧化鉿薄膜上成長的五苯環薄膜較佳,有比較好的元件電子遷移率。
本研究利用射頻反應式濺鍍系統沉積氧氮化鉿薄膜,作為五苯
環薄膜電晶體的閘極介電層時可以提高元件特性。
Hafnium oxide is a high-k dielectric material which have dielectric constant of 25,high-k dielectric material use to be a gate oxide can decrease the threshold voltage and device scale for low voltage and microelectronics. Organic thin film transistors has been used to fabricate soft electronics devices. The active layers for OTFTs is numerous, pentacene for our research is one of most used OTFTs active layers.
In this thesis, we fabricate the HfO2 and HfON thin film by RF Reactive Magnetron Sputter System. The target is Hf metal for 99.99%, and we use Mass Flow Controller to put the Ar-O2-N2 mix gas in the chamber.HfO2 or HfON thin film would deposit on the substrate by Hf sputtering atoms react for O2 and N2.We deposit different recipes film to research their properties. Before depositing the dielectric film, we pre-deposit a Hf thin film. The thin film can decrease roughness for dielectric film, surface roughness decrease from Ra=1.972nm without Hf pre-sputtered to Ra=1.414nm with Hf pre-sputtered, this fabrication increase the device characteristics ,mobility increase from 0.086 cm2/V.s to 0.174 cm2/V.s, threshold voltage decrease from -0.7V to -0.31V,on-off ratio increase from 0.9x103 to 3.2x103, subthreshold swing decrease from -0.368 V/dec to -0.209 V/dec.
In our research, a low surface energy dielectric film would have better device characteristics of pentacene based OTFTs. In this thesis, we deposit HfON thin film by Reactive Magnetron Sputter System, and make a OTFT device which have a better characteristics.
參考文獻
[1] C.S. Kim, S.J. Jo, S.W. Lee, W.J. Kim, H.K. Baik, S.J. Lee, D.K. Hwang, S. Im, Semicond. Sci. Technol. 21/8 (2006) 1022.
[2] J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Chem. Mat. 16/23 (2004) 4543.
[3] S. Kang, S. Jung, J. Park, H.J. Lee, M. Yi, Elsevier Science Bv, 2007, p. 1503.
[4] T.W. Kelley, L.D. Boardman, T.D. Dunbar, D.V. Muyres, M.J. Pellerite, T.P. Smith, The Journal of Physical Chemistry B 107/24 (2003) 5877.
[5] J.W. Lee, J.W. Chang, D.J. Kim, Y.S. Yoon, J.K. Kim, IEEE Electron Device Lett. 28/5 (2007) 379.
[6] K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11/11 (1996) 2757.
[7] A.L. Deman, J. Tardy, Organic Electronics 6/2 (2005) 78.
[8] Tsumura, K.K., T. Ando, Phys. Lett 49 (1986) p. 1210.
[9] J.H.Burroughes, C.A.J., R.H.Friend, (1988).
[10] Thiemann, H.S.a.K.H., 23 (1977) p. 815.
[11] C.D. Dimitrakopoulos, P.R.L. Malenfant, Advanced Materials 14/2 (2002) 99.
[12] Y.Y. Lin, D.J.G., S.F.Nelson, T.N.Jackson, IEEE Electron Device Lett. 18 (1997) 87.
[13] A. Benor, A. Hoppe, V. Wagner, D. Knipp, Organic Electronics 8/6 (2007) 749.
[14] P.R.L.Malenfant, C.D.D.a., ADVANCED MATERIALS 14(2) (2002) 99.
[15] V. Coropceanu, J. Cornil, D.A. da Silva, Y. Olivier, R. Silbey, J.L. Bredas, Chem. Rev. 107/4 (2007) 926.
[16] T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, S.D. Theiss, Chem. Mat. 16/23 (2004) 4413.
[17] S.M.SZE, Semiconductor Device JOHN WILEY & SONS, INC.
[18] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.C. Chang, A.C. Mayer, P. Clancy, J.M. Blakely, R.L. Headrick, S. Iannotta, G.G. Malliaras, Chem. Mat. 16/23 (2004) 4497.
[19] G.Horowitz, ADVANCED MATERIALS 10(5) (1998) p. 365.
[20] A. Facchetti, M.-H.Y., T.J. Marks, ADVANCED MATERIALS, 17: (2005.) p. 1705.
[21] W.H. Mills, M.M., Journal of the Chemical Society, 101: (1912.) p.2194.
[22] G.A.d.W. Christine C.Mattheus, Robert A.de Groot,and Thomas T. M., J. AM. CHEM. SOC., 125: (2003.) p. 6323.
[23] G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89/10 (2001) 5243.
[24] T.B. Massalski, (1990).
[25] J. Aarik, A. Aidla, H. Mandar, T. Uustare, K. Kukli, M. Schuisky, Appl. Surf. Sci. 173/1-2 (2001) 15.
[26] H. Kim, P.C. McIntyre, K.C. Saraswat, Applied Physics Letters 82/1 (2003) 106.
[27] S.W. Nam, J.H. Yoo, S. Nam, H.J. Choi, D. Lee, D.H. Ko, J.H. Moon, J.H. Ku, S. Choi, Elsevier Science Bv, 2002, p. 139.
[28] K. Yamamoto, S. Hayashi, M. Kubota, M. Niwa, Applied Physics Letters 81/11 (2002) 2053.
[29] C.S. Kang, H.J. Cho, K. Onishi, R. Nieh, R. Choi, S. Gopalan, S. Krishnan, J.H. Han, J.C. Lee, Applied Physics Letters 81/14 (2002) 2593.
[30] M.A. Quevedo-Lopez, M. El-Bouanani, M.J. Kim, B.E. Gnade, R.M. Wallace, M.R. Visokay, A. LiFatou, J.J. Chambers, L. Colombo, Applied Physics Letters 82/26 (2003) 4669.
[31] M.A. Frank, S. Sayan, S. Dormann, T.J. Emge, L.S. Wielunski, E. Garfunkel, Y.J. Chabal, Elsevier Science Sa, 2004, p. 6.
[32] J. Tardy, M. Erouej, A.L. Deman, A. Gagnalre, V. Teodorescu, M.G. Blanchin, B. Canut, A. Barau, M. Zaharescu, Pergamon-Elsevier Science Ltd, 2007, p. 372.
[33] G.T. Orb Acton, Hong Ma, Jae Won Ka, Hin-Lap Yip, Neil M. Tucker, Alex K.-Y. Jen,, Advanced Materials 20/19 (2008) 3697.
[34] G.G. Ting, O. Acton, H. Ma, J.W. Ka, A.K.-Y. Jen, Langmuir 25/4 (2009) 2140.
[35] G. He, Q. Fang, M. Liu, L.Q. Zhu, L.D. Zhang, J. Cryst. Growth 268/1-2 (2004) 155.
[36] M. Liu, Q. Fang, G. He, L.Q. Zhu, L.D. Zhang, Appl. Surf. Sci. 252/24 (2006) 8673.
[37] K.Y. Tong, E.V. Jelenkovic, W. Liu, J.Y. Dai, Microelectronic Engineering 83/2 (2006) 293.
[38] 古國欣, 五苯環在疏水性氮化鋁上的成長機制研究 (2008,清華大學).
[39] F. Shinoki, A. Itoh, J. Appl. Phys. 46/8 (1975) 3381.
[40] N.N.D. Laboratories, 半導體設備見習 (2007).
[41] 汪建民, 材料分析,中國材料科學學會: (2005).
[42] 許. 吳泰伯, x光繞射原理與材料結構分析, 中國材料科學學會 (2004).
[43] C.-L. Cheng, C.-W. Liu, K.-S. Chang-Liao, P.-H. Tsai, J.-T. Jeng, S.-W. Huang, B.-T. Dai, Solid-State Electronics 52/10 (2008) 1530.
[44] D.E. Sullivan, The Journal of Chemical Physics 74/4 (1981) 2604.
[45] K.X. Ma, C.H. Ho, F.R. Zhu, T.S. Chung, Thin Solid Films 371/1-2 (2000) 140.
[46] J. C. Vickerman, Surface Analysis: the principal techniques, John Wiley& Sons: (1997).
[47] M. Houssa, L. Pantisano, L.A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Mater. Sci. Eng. R-Rep. 51/4-6 (2006) 37.
[48] M. Ohring, Mterials Science of Thin Films:Depositon and Structure Academic Press (,2002).
[49] S.E. Fritz, T.W. Kelley, C.D. Frisbie, The Journal of Physical Chemistry B 109/21 (2005) 10574.
[50] T. Yuasa, Asuha, K. Yoneda, Y. Todokoro, H. Kobayashi, Applied Physics Letters 77/24 (2000) 4031.
[51] W.Y. Chou, C.W. Kuo, H.L. Cheng, Y.R. Chen, F.C. Tang, F.Y. Yang, D.Y. Shu, C.C. Liao, Applied Physics Letters 89/11 (2006) 3.
[52] T. Kodzasa, M. Yoshida, S. Uemura, T. Kamata, Elsevier Science Sa, 2003, p. 943.
[53] H.-W. Zan, C.-W. Chou, C.-H. Wang, H.-T. Song, J.-C. Hwang, P.-T. Lee, J. Appl. Phys. 105/6 (2009) 063718.