研究生: |
蔡妤晴 Chuah, Yi-Ching |
---|---|
論文名稱: |
運用氣溶膠法合成金屬-有機框架衍生材料作為CO2再利用以製備甲醇及對苯二甲酸二甲酯 Aerosol-Assisted Synthesis of Metal-Organic Framework-Derived Hybrid Catalysts for CO2 Utilization to Synthesize Methanol and Dimethyl terephthalate |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
潘詠庭
Pan, Yung-Tin 陈炳宏 Chen, Bing-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 金屬-有機框架 、氣溶膠 、二氧化碳 、一氧化碳 、對苯二甲酸乙二醇酯 、對苯二甲酸二甲酯 |
外文關鍵詞: | metal-organic framework, aerosol, carbon dioxide, carbon monoxide, polyethylene terephthalate, dimethyl terephthalate |
相關次數: | 點閱:43 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究的第一部分中,展示了一種基於氣溶膠的連續合成金屬有機框架(MOF)衍生材料的方法,並結合實時氣相電泳進行材料表徵,用於製備通過CO2和CO聯合氫化反應生產甲醇的混合催化劑。以銅基(HKUST-1)和鋅基(ZIF-8)MOF膠體為模板,合成了兩種負載在Al2O3或CeO2上的Cu-ZnO催化劑。結果表明,差動遷移分析(DMA)的結合實現了氣溶膠MOF衍生材料的實時分析,從而增強了連續生產的可追溯性。在甲醇生產中,可以實現90.52%的最佳選擇性和7.50 mmol.gcat-1h-1的時空產率。甲醇的時空產率顯示出與催化材料的金屬表面積成線性關係,其中具有較高表面積的Al2O3負載樣品表現出比CeO2負載樣品更高的催化活性。本研究展示了通過氣溶膠相合成和實時表徵實現MOF衍生混合催化劑材料連續生產的重大進展。所開發材料在CO2和CO聯合氫化生成甲醇中的高催化性能在CO2利用領域具有應用前景。
在本研究的第二部分中,鑑於對可持續化學過程的迫切需求,本研究介紹了一種創新的一鍋反應系統,該系統有效地將溫室氣體轉化為甲醇,同時將聚對苯二甲酸乙二醇酯(PET)轉化為對苯二甲酸二甲酯(DMT)和乙二醇(EG)。我們的方法核心在於使用氣溶膠輔助合成方法開發由金屬有機框架(MOF)衍生的混合材料。這些催化劑具有在不同載體上調諧的Cu/ZnO活性相,專為一氧化碳(CO)和二氧化碳(CO2)的氫化而設計。本研究證實,將PET甲醇解與(CO2+CO)氫化過程相結合,顯著提高了2.5倍的轉化率,從而顯著增強了碳減排效果。這些催化劑的優異性能在優化條件下實現了5.57 mmol.gcat-1h-1的時空產率和92.35%的DMT選擇性。這些結果不僅突顯了MOF衍生材料在促進複雜化學轉化中的多功能性,還對環境可持續性做出了重要貢獻。這種雙功能系統為塑料廢物和溫室氣體的利用提供了實際解決方案,體現了向循環經濟原則邁進的重要一步。
In the first part of this study, a continuous aerosol-based synthesis of metal-organic framework (MOF) derived materials, in combination with real-time gas-phase electrophoresis for material characterization, is demonstrated for the preparation of hybrid catalyst used in methanol production via combined CO2 and CO hydrogenation reactions. Cu-based (HKUST-1) and Zn-based (ZIF-8) MOF colloids were prepared as the templates for the synthesis of two types of the Cu-ZnO catalysts supported on either Al2O3 or CeO2. The results show the incorporation of differential mobility analysis (DMA) enabled real-time analysis of aerosol MOF-derived materials, thereby enhancing traceability of continuous production. Optimal selectivity of 90.52%, and space-time yield of 7.50 mmol.gcat-1h-1 can be achieved toward methanol production. The space-time yield of methanol was shown to be linearly proportional to the metal surface area of the catalyst material, where the Al2O3-supported samples with a higher surface area possessed a higher catalytic activity than the CeO2-supported samples. This study demonstrated significant advances in the continuous production of MOF-derived hybrid catalyst materials through the aerosol-phase synthesis with real-time characterization. The high catalytic performance of the developed materials in the combined CO2 and CO hydrogenation to methanol bears promise for applications in the field of CO2 utilization.
In the second part of this study, driven by the urgent need for sustainable chemical processes, this study introduces an innovative one-pot reaction system that efficiently converts greenhouse gases into methanol while simultaneously processing polyethylene terephthalate (PET) into dimethyl terephthalate (DMT) and ethylene glycol (EG). The core of our approach involves the development of hybrid materials derived from metal-organic frameworks (MOFs) using an aerosol-assisted synthesis method. These catalysts, featuring a Cu/ZnO active phase on various support, are finely tuned for hydrogenation of both carbon monoxide (CO) and carbon dioxide (CO2). This study confirms that integrating PET methanolysis with the (CO2+CO) hydrogenation process significantly boosts their conversion rates by 2.5 times, thereby markedly enhancing the carbon reduction effect. The exceptional performance of these catalysts was highlighted by achieving a space-time yield of 5.57 mmol.gcat-1h-1 and selectivity of 92.35% for DMT production under optimized conditions. These results not only underscores the versatility of MOF-derived materials in facilitating complex chemical transformations but also makes a significant contribution to environmental sustainability. This dual-function system offers a practical solution for the utilization of plastic waste and greenhouse gases, embodying a pivotal step forward in the pursuit of circular economy principles.
(1) Sen, R.; Goeppert, A.; Kar, S.; Prakash, G. K. S. Hydroxide Based Integrated CO2 Capture from Air and Conversion to Methanol. J. Am. Chem. Soc. 2020, 142 (10), 4544–4549. https://doi.org/10.1021/jacs.9b12711.
(2) Stolar, T.; Prašnikar, A.; Martinez, V.; Karadeniz, B.; Bjelić, A.; Mali, G.; Friščić, T.; Likozar, B.; Užarević, K. Scalable Mechanochemical Amorphization of Bimetallic Cu−Zn MOF-74 Catalyst for Selective CO2 Reduction Reaction to Methanol. ACS Appl. Mater. Interfaces 2021, 13 (2), 3070–3077. https://doi.org/10.1021/acsami.0c21265.
(3) Ye, R.-P.; Ding, J.; Gong, W.; Argyle, M. D.; Zhong, Q.; Wang, Y.; Russell, C. K.; Xu, Z.; Russell, A. G.; Li, Q.; Fan, M.; Yao, Y.-G. CO2 Hydrogenation to High-Value Products via Heterogeneous Catalysis. Nat. Commun. 2019, 10 (1), 5698. https://doi.org/10.1038/s41467-019-13638-9.
(4) Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem. Rev. 2015, 115 (23), 12936–12973. https://doi.org/10.1021/acs.chemrev.5b00197.
(5) Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the Art and Perspectives in Heterogeneous Catalysis of CO2 Hydrogenation to Methanol. Chem. Soc. Rev. 2020, 49 (5), 1385–1413. https://doi.org/10.1039/C9CS00614A.
(6) Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev. 2017, 117 (14), 9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816.
(7) Nguyen Hoang, T. T.; Lin, Y.-S.; Le, T. N. H.; Le, T. K.; Huynh, T. K. X.; Tsai, D.-H. Cu-ZnO@Al2O3 Hybrid Nanoparticle with Enhanced Activity for Catalytic CO2 Conversion to Methanol. Adv. Powder Technol. 2021, 32 (5), 1785–1792. https://doi.org/10.1016/j.apt.2021.03.034.
(8) Jangam, A.; Hongmanorom, P.; Hui Wai, M.; Jeffry Poerjoto, A.; Xi, S.; Borgna, A.; Kawi, S. CO2 Hydrogenation to Methanol over Partially Reduced Cu-SiO2P Catalysts: The Crucial Role of Hydroxyls for Methanol Selectivity. ACS Appl. Energy Mater. 2021, 4 (11), 12149–12162. https://doi.org/10.1021/acsaem.1c01734.
(9) Wang, J. Y.; Zhang, G. H.; Zhu, J.; Zhang, X. B.; Ding, F. S.; Zhang, A. F.; Guo, X. W.; Song, C. S. CO2 Hydrogenation to Methanol over In2O3-Based Catalysts: From Mechanism to Catalyst Development. ACS Catal. 2021, 11 (3), 1406–1423. https://doi.org/10.1021/acscatal.0c03665.
(10) Chen, F.; Zhang, P.; Zeng, Y.; Kosol, R.; Xiao, L.; Feng, X.; Li, J.; Liu, G.; Wu, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Vapor-Phase Low-Temperature Methanol Synthesis from CO2-Containing Syngas via Self-Catalysis of Methanol and Cu/ZnO Catalysts Prepared by Solid-State Method. Appl. Catal. B Environ. 2020, 279, 119382. https://doi.org/10.1016/j.apcatb.2020.119382.
(11) Chen, F.; Zhang, P.; Xiao, L.; Liang, J.; Zhang, B.; Zhao, H.; Kosol, R.; Ma, Q.; Chen, J.; Peng, X.; Yang, G.; Tsubaki, N. Structure–Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2. ACS Appl. Mater. Interfaces 2021, 13 (7), 8191–8205. https://doi.org/10.1021/acsami.0c18600.
(12) Zhu, J. D.; Ciolca, D.; Liu, L.; Parastaev, A.; Kosinov, N.; Hensen, E. J. M. Flame Synthesis of Cu/ZnO–CeO2 Catalysts: Synergistic Metal–Support Interactions Promote CH3OH Selectivity in CO2 Hydrogenation. ACS Catal. 2021, 11 (8), 4880–4892. https://doi.org/10.1021/acscatal.1c00131.
(13) Zhang, P. P.; Araki, Y.; Feng, X. B.; Li, H. J.; Fang, Y.; Chen, F.; Shi, L.; Peng, X. B.; Yoneyama, Y.; Yang, G.; Tsubaki, N. Urea-Derived Cu/ZnO Catalyst Being Dried by Supercritical CO2 for Low-Temperature Methanol Synthesis. Fuel 2020, 268, 117213. https://doi.org/10.1016/j.fuel.2020.117213.
(14) Cheng, S.; Sun, Z.; Lim, K. H.; Zhang, T.; Hondo, E.; Du, T.; Liu, L.; Judd, M.; Cox, N.; Yin, Z.; Li, G. K.; Kawi, S. BiOCl Nanoflowers with High Levels of Oxygen Vacancy for Photocatalytic CO2 Reduction. ACS Appl. Nano Mater. 2023, 6 (5), 3608–3617. https://doi.org/10.1021/acsanm.2c05364.
(15) Chen, J.; Liu, X.; Xi, S.; Zhang, T.; Liu, Z.; Chen, J.; Shen, L.; Kawi, S.; Wang, L. Functionalized Ag with Thiol Ligand to Promote Effective CO2 Electroreduction. ACS Nano 2022, 16 (9), 13982–13991. https://doi.org/10.1021/acsnano.2c03512.
(16) Deng, Y.; Li, Z.; Chen, T.; Bian, Z.; Lim, K.; Dewangan, N.; Giap Haw, K.; Wang, Z.; Kawi, S. Low-Cost and Facile Fabrication of Defect-Free Water Permeable Membrane for CO2 Hydrogenation to Methanol. Chem. Eng. J. 2022, 435, 133554. https://doi.org/10.1016/j.cej.2021.133554.
(17) Hsueh, Y.-A.; Chuah, Y. C.; Lin, C.-H.; Tsai, D.-H. Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction. ACS Appl. Nano Mater. 2022, 5 (7), 8883–8893. https://doi.org/10.1021/acsanm.2c01040.
(18) Chuah, Y. C.; Huang, R.-Y.; Tsai, D.-H. Gas-Phase Continuous Synthesis of Metal-Organic Framework-Derived Hybrid Catalysts for Combined CO2 and CO Hydrogenation to Methanol. Adv. Powder Technol. 2024, 35 (4), 104407. https://doi.org/10.1016/j.apt.2024.104407.
(19) Huang, R.-Y.; Nguyen Hoang, T. T.; Hsueh, Y.-A.; Tsai, D.-H. Combined Hydrogenation of CO2 and CO to Methanol Using Aerosol-Assisted Metal-Organic Framework-Derived Hybrid Catalysts. Fuel 2023, 349, 128647. https://doi.org/10.1016/j.fuel.2023.128647.
(20) Nguyen Hoang, T. T.; Tsai, D.-H. Low-Temperature Methanol Synthesis via (CO2 + CO) Combined Hydrogenation Using Cu-ZnO/Al2O3 Hybrid Nanoparticle Cluster. Appl. Catal. Gen. 2022, 645, 118844. https://doi.org/10.1016/j.apcata.2022.118844.
(21) Wu, M. W.; Miao, M.; Li, W. Z.; Zhang, X.; Zhang, L.; Zhen, T. M.; Fu, Y.; Jin, J. T.; Yuan, L. Metal-Organic Framework-Derived One-Dimensional Pd@CeO2 Catalysts with Enhanced Activity for Methane Oxidation. Fuel 2023, 331, 125575. https://doi.org/10.1016/j.fuel.2022.125575.
(22) Lin, F. W.; Jiang, X.; Boreriboon, N.; Wang, Z. H.; Song, C. S.; Cen, K. Effects of Supports on Bimetallic Pd-Cu Catalysts for CO2 Hydrogenation to Methanol. Appl. Catal. Gen. 2019, 585, 117210. https://doi.org/10.1016/j.apcata.2019.117210.
(23) Zhu, S. L.; Deng, D.; Nguyen, M. T.; Chau, Y. R.; Wen, C.-Y.; Yonezawa, T. Synthesis of Au@Cu2O Core–Shell Nanoparticles with Tunable Shell Thickness and Their Degradation Mechanism in Aqueous Solutions. Langmuir 2020, 36 (13), 3386–3392. https://doi.org/10.1021/acs.langmuir.0c00382.
(24) Grabow, L. C.; Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catal. 2011, 1 (4), 365–384. https://doi.org/10.1021/cs200055d.
(25) Tada, S.; Satokawa, S. Effect of Ag Loading on CO2-to-Methanol Hydrogenation over Ag/CuO/ZrO2. Catal. Commun. 2018, 113, 41–45. https://doi.org/10.1016/j.catcom.2018.05.009.
(26) Ay, S.; Ozdemir, M.; Melikoglu, M. Effects of Magnesium and Chromium Addition on Stability, Activity and Structure of Copper-Based Methanol Synthesis Catalysts. Int. J. Hydrog. Energy 2021, 46 (24), 12857–12873. https://doi.org/10.1016/j.ijhydene.2021.01.069.
(27) Zou, T. S.; Araújo, T. P.; Krumeich, F.; Mondelli, C.; Pérez-Ramírez, J. ZnO-Promoted Inverse ZrO2–Cu Catalysts for CO2-Based Methanol Synthesis under Mild Conditions. ACS Sustain. Chem. Eng. 2022, 10 (1), 81–90. https://doi.org/10.1021/acssuschemeng.1c04751.
(28) Zhu, J. D.; Su, Y. Q.; Chai, J. C.; Muravev, V.; Kosinov, N.; Hensen, E. J. M. Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO2 on Cu/CeO2. ACS Catal. 2020, 10 (19), 11532–11544. https://doi.org/10.1021/acscatal.0c02909.
(29) Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120 (15), 7984–8034. https://doi.org/10.1021/acs.chemrev.9b00723.
(30) Jiang, F.; Yang, Y.; Wang, L.; Li, Y. F.; Fang, Z.; Xu, Y. B.; Liu, B.; Liu, X. H. Dependence of Copper Particle Size and Interface on Methanol and CO Formation in CO2 Hydrogenation over Cu@ZnO Catalysts. Catal. Sci. Technol. 2022, 12 (2), 551–564. https://doi.org/10.1039/D1CY01836A.
(31) Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the Promotion of Cu Catalysts by ZnO for Methanol Synthesis. Science 2016, 352 (6288), 969–974. https://doi.org/10.1126/science.aaf0718.
(32) Chen, F.; Liang, J. M.; Wang, F.; Guo, X.; Gao, W. Z.; Kugue, Y.; He, Y. L.; Yang, G. H.; Reubroycharoen, P.; Vitidsant, T.; Tsubaki, N. Improved Catalytic Activity and Stability of Cu/ZnO Catalyst by Boron Oxide Modification for Low-Temperature Methanol Synthesis. Chem. Eng. J. 2023, 458, 141401. https://doi.org/10.1016/j.cej.2023.141401.
(33) Tisseraud, C.; Comminges, C.; Pronier, S.; Pouilloux, Y.; Le Valant, A. The Cu–ZnO Synergy in Methanol Synthesis Part 3: Impact of the Composition of a Selective Cu@ZnOx Core–Shell Catalyst on Methanol Rate Explained by Experimental Studies and a Concentric Spheres Model. J. Catal. 2016, 343, 106–114. https://doi.org/10.1016/j.jcat.2015.12.005.
(34) Qiu, S.; Wu, Y.; Tan, Y.; Dai, Q.; Gao, X.; Kawi, S. Applications of Al2O3-Based Nano-Catalysts in Thermocatalytic CO2 Transformations: Impacts of Surface Acidity and Basicity. ChemCatChem 2023, 15 (12), e202300420. https://doi.org/10.1002/cctc.202300420.
(35) Li, P.; Chen, X. Y.; Li, Y. D.; Schwank, J. W. A Review on Oxygen Storage Capacity of CeO2-Based Materials: Influence Factors, Measurement Techniques, and Applications in Reactions Related to Catalytic Automotive Emissions Control. Catal. Today 2019, 327, 90–115. https://doi.org/10.1016/j.cattod.2018.05.059.
(36) Jiang, Y. W.; Gao, J. H.; Zhang, Q.; Liu, Z.; Fu, M. L.; Wu, J. L.; Hu, Y.; Ye, D. Q. Enhanced Oxygen Vacancies to Improve Ethyl Acetate Oxidation over MnOx-CeO2 Catalyst Derived from MOF Template. Chem. Eng. J. 2019, 371, 78–87. https://doi.org/10.1016/j.cej.2019.03.233.
(37) Furimsky, E. CO2 Hydrogenation to Methanol and Methane over Carbon-Supported Catalysts. Ind. Eng. Chem. Res. 2020, 59 (35), 15393–15423. https://doi.org/10.1021/acs.iecr.0c02250.
(38) Tu, J.-Y.; Shen, C.-H.; Tsai, D.-H.; Kung, C.-W. Carbonized Nickel-Incorporated Metal–Organic Frameworks for Methane Reforming: Post-Synthetic Modification vs Impregnation. ACS Appl. Nano Mater. 2023, 6 (12), 10269–10279. https://doi.org/10.1021/acsanm.3c01173.
(39) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-Organic Framework as a Template for Porous Carbon Synthesis. J. Am. Chem. Soc. 2008, 130 (16), 5390–5391. https://doi.org/10.1021/ja7106146.
(40) A. Sheldon, R.; Norton, M. Green Chemistry and the Plastic Pollution Challenge: Towards a Circular Economy. Green Chem. 2020, 22 (19), 6310–6322. https://doi.org/10.1039/D0GC02630A.
(41) Barnard, E.; Arias, J. J. R.; Thielemans, W. Chemolytic Depolymerisation of PET: A Review. Green Chem. 2021, 23 (11), 3765–3789. https://doi.org/10.1039/D1GC00887K.
(42) Smith, R. L.; Takkellapati, S.; Riegerix, R. C. Recycling of Plastics in the United States: Plastic Material Flows and Polyethylene Terephthalate (PET) Recycling Processes. ACS Sustain. Chem. Eng. 2022, 10 (6), 2084–2096. https://doi.org/10.1021/acssuschemeng.1c06845.
(43) Han, M. 5 - Depolymerization of PET Bottle via Methanolysis and Hydrolysis. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., V.k., A., Thomas, M. G., Eds.; Plastics Design Library; William Andrew Publishing, 2019; pp 85–108. https://doi.org/10.1016/B978-0-12-811361-5.00005-5.
(44) Dinh Pham, D.; Cho, J. Low-Energy Catalytic Methanolysis of Poly(Ethyleneterephthalate). Green Chem. 2021, 23 (1), 511–525. https://doi.org/10.1039/D0GC03536J.
(45) Bohre, A.; Jadhao, P. R.; Tripathi, K.; Pant, K. K.; Likozar, B.; Saha, B. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. ChemSusChem 2023, 16 (14), e202300142. https://doi.org/10.1002/cssc.202300142.
(46) Zhang, S.; Hu, Q.; Zhang, Y.-X.; Guo, H.; Wu, Y.; Sun, M.; Zhu, X.; Zhang, J.; Gong, S.; Liu, P.; Niu, Z. Depolymerization of Polyesters by a Binuclear Catalyst for Plastic Recycling. Nat. Sustain. 2023, 6 (8), 965–973. https://doi.org/10.1038/s41893-023-01118-4.
(47) Kim, D. H.; Han, D. O.; In Shim, K.; Kim, J. K.; Pelton, J. G.; Ryu, M. H.; Joo, J. C.; Han, J. W.; Kim, H. T.; Kim, K. H. One-Pot Chemo-Bioprocess of PET Depolymerization and Recycling Enabled by a Biocompatible Catalyst, Betaine. ACS Catal. 2021, 11 (7), 3996–4008. https://doi.org/10.1021/acscatal.0c04014.
(48) Laldinpuii, Z. T.; Khiangte, V.; Lalhmangaihzuala, S.; Lalmuanpuia, C.; Pachuau, Z.; Lalhriatpuia, C.; Vanlaldinpuia, K. Methanolysis of PET Waste Using Heterogeneous Catalyst of Bio-Waste Origin. J. Polym. Environ. 2022, 30 (4), 1600–1614. https://doi.org/10.1007/s10924-021-02305-0.
(49) Arias, J. J. R.; Thielemans, W. Instantaneous Hydrolysis of PET Bottles: An Efficient Pathway for the Chemical Recycling of Condensation Polymers. Green Chem. 2021, 23 (24), 9945–9956. https://doi.org/10.1039/D1GC02896K.
(50) Suriapparao, D. V.; Kumar, D. A.; Vinu, R. Microwave Co-Pyrolysis of PET Bottle Waste and Rice Husk: Effect of Plastic Waste Loading on Product Formation. Sustain. Energy Technol. Assess. 2022, 49, 101781. https://doi.org/10.1016/j.seta.2021.101781.
(51) Lin, M. M.; Tay Zheng, J.; Yu, W.-Y. One-Pot Methanolysis of Poly(Ethylene Terephthalate) Enabled by Isopropanol-Assisted CO2 Hydrogenation. J. Taiwan Inst. Chem. Eng. 2024, 158, 105069. https://doi.org/10.1016/j.jtice.2023.105069.
(52) Xiao, X.; Xin, H.; Qi, Y.; Zhao, C.; Wu, P.; Li, X. One-Pot Conversion of Dimethyl Terephthalate to 1,4-Cyclohexanedimethanol. Appl. Catal. Gen. 2022, 632, 118510. https://doi.org/10.1016/j.apcata.2022.118510.
(53) Zhang, Q.; Huang, R.; Yao, H.; Lu, X.; Yan, D.; Xin, J. Removal of Zn2+ from Polyethylene Terephthalate (PET) Glycolytic Monomers by Sulfonic Acid Cation Exchange Resin. J. Environ. Chem. Eng. 2021, 9 (4), 105326. https://doi.org/10.1016/j.jece.2021.105326.
(54) Du, J.-T.; Sun, Q.; Zeng, X.-F.; Wang, D.; Wang, J.-X.; Chen, J.-F. ZnO Nanodispersion as Pseudohomogeneous Catalyst for Alcoholysis of Polyethylene Terephthalate. Chem. Eng. Sci. 2020, 220, 115642. https://doi.org/10.1016/j.ces.2020.115642.
(55) Jiang, Z.; Yan, D.; Xin, J.; Li, F.; Guo, M.; Zhou, Q.; Xu, J.; Hu, Y.; Lu, X. Poly(Ionic Liquid)s as Efficient and Recyclable Catalysts for Methanolysis of PET. Polym. Degrad. Stab. 2022, 199, 109905. https://doi.org/10.1016/j.polymdegradstab.2022.109905.
(56) Qu, X.; Zhou, G.; Wang, R.; Yuan, B.; Jiang, M.; Tang, J. Synergistic Catalysis of Imidazole Acetate Ionic Liquids for the Methanolysis of Spiral Poly(Ethylene 2,5-Furandicarboxylate) under a Mild Condition. Green Chem. 2021, 23 (4), 1871–1882. https://doi.org/10.1039/D0GC04019C.
(57) Li, Y.; Wang, M.; Liu, X.; Hu, C.; Xiao, D.; Ma, D. Catalytic Transformation of PET and CO2 into High-Value Chemicals. Angew. Chem. 2022, 134 (10), e202117205. https://doi.org/10.1002/ange.202117205.
(58) Liang, T.-Y.; Senthil Raja, D.; Chin, K. C.; Huang, C.-L.; Sethupathi, S. A.; Leong, L. K.; Tsai, D.-H.; Lu, S.-Y. Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS Appl. Mater. Interfaces 2020, 12 (13), 15183–15193. https://doi.org/10.1021/acsami.0c00086.
(59) A. Goetjen, T.; Liu, J.; Wu, Y. F.; Sui, J. Y.; Zhang, X.; T. Hupp, J.; K. Farha, O. Metal–Organic Framework (MOF) Materials as Polymerization Catalysts: A Review and Recent Advances. Chem. Commun. 2020, 56 (72), 10409–10418. https://doi.org/10.1039/D0CC03790G.
(60) Zhang, X.; Chen, Z. J.; Liu, X. Y.; L. Hanna, S.; Wang, X. J.; Taheri-Ledari, R.; Maleki, A.; Li, P.; K. Farha, O. A Historical Overview of the Activation and Porosity of Metal–Organic Frameworks. Chem. Soc. Rev. 2020, 49 (20), 7406–7427. https://doi.org/10.1039/D0CS00997K.
(61) Yang, C.-M.; Huynh, M. V.; Liang, T.-Y.; Le, T. K.; Kieu Xuan Huynh, T.; Lu, S.-Y.; Tsai, D.-H. Metal-Organic Framework-Derived Mg-Zn Hybrid Nanocatalyst for Biodiesel Production. Adv. Powder Technol. 2022, 33 (1), 103365. https://doi.org/10.1016/j.apt.2021.11.017.
(62) Yue, C. Y.; Wu, L.; Lin, Y. Q.; Lu, Y. Q.; Shang, C.; Ma, R.; Zhang, X. C.; Wang, X. N.; Wu, W. D.; Chen, X. D.; Wu, Z. X. Study on the Stability, Evolution of Physicochemical Properties, and Postsynthesis of Metal–Organic Frameworks in Bubbled Aqueous Ozone Solution. ACS Appl. Mater. Interfaces 2021, 13 (22), 26264–26277. https://doi.org/10.1021/acsami.1c02213.
(63) Yang, D.; Bernales, V.; Islamoglu, T.; K. Farha, O.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Gates, B. C. Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000. J. Am. Chem. Soc. 2016, 138 (46), 15189–15196. https://doi.org/10.1021/jacs.6b08273.
(64) Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120 (2), 1438–1511. https://doi.org/10.1021/acs.chemrev.9b00223.
(65) Law, Z. X.; Tsai, D.-H. Design of Aerosol Nanoparticles for Interfacial Catalysis. Langmuir 2022, 38 (30), 9037–9042. https://doi.org/10.1021/acs.langmuir.2c01155.
(66) Law, Z. X.; Tsai, D.-H. Efficient Calcium Looping-Integrated Methane Dry Reforming by Dual Functional Aerosol Ca–Ni–Ce Nanoparticle Clusters. ACS Sustain. Chem. Eng. 2023, 11 (6), 2574–2585. https://doi.org/10.1021/acssuschemeng.2c06832.
(67) Ghildiyal, P.; Ke, X.; Biswas, P.; Nava, G.; Schwan, J.; Xu, F.; Kline, D. J.; Wang, H.; Mangolini, L.; Zachariah, M. R. Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites. ACS Appl. Mater. Interfaces 2021, 13 (1), 458–467. https://doi.org/10.1021/acsami.0c17159.
(68) Wang, H. Y.; Jian, G. Q.; Yan, S.; DeLisio, J. B.; Huang, C.; Zachariah, M. R. Electrospray Formation of Gelled Nano-Aluminum Microspheres with Superior Reactivity. ACS Appl. Mater. Interfaces 2013, 5 (15), 6797–6801. https://doi.org/10.1021/am401238t.
(69) Li, Y. Q.; Zhang, X. C.; Shang, C.; Wei, X. R.; Wu, L.; Wang, X. N.; Wu, W. D.; Chen, X. D.; Selomulya, C.; Zhao, D. Y.; Wu, Z. X. Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS Appl. Mater. Interfaces 2020, 12 (19), 21922–21935. https://doi.org/10.1021/acsami.0c04998.
(70) Shang, C.; Wu, Z. X.; Duo Wu, W.; Chen, X. D. Combination of Spray Drying Encapsulation and Steaming Transformation toward Robust Hierarchical Zeolite Microspheres: Synthesis, Formation Mechanism and Acid Catalysis. Chem. Eng. Sci. 2021, 229, 116080. https://doi.org/10.1016/j.ces.2020.116080.
(71) Lee, F.-C.; Lu, Y.-F.; Chou, F.-C.; Cheng, C.-F.; Ho, R.-M.; Tsai, D.-H. Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation. J. Phys. Chem. C 2016, 120 (25), 13638–13648. https://doi.org/10.1021/acs.jpcc.6b05200.
(72) Nguyen, T. T.; Miyauchi, M.; Rahmatika, A. M.; Cao, K. L. A.; Tanabe, E.; Ogi, T. Enhanced Protein Adsorption Capacity of Macroporous Pectin Particles with High Specific Surface Area and an Interconnected Pore Network. ACS Appl. Mater. Interfaces 2022, 14 (12), 14435–14446. https://doi.org/10.1021/acsami.1c22307.
(73) Arutanti, O.; Nandiyanto, A. B. D.; Ogi, T.; Kim, T. O.; Okuyama, K. Influences of Porous Structurization and Pt Addition on the Improvement of Photocatalytic Performance of WO3 Particles. ACS Appl. Mater. Interfaces 2015, 7 (5), 3009–3017. https://doi.org/10.1021/am507935j.
(74) Rahmatika, A. M.; Toyoda, Y.; Nguyen, T. T.; Cao, K. L. A.; Hirano, T.; Kitamura, T.; Goi, Y.; Morita, Y.; Ogi, T. Effects of Solvent Polarity on Nanostructure Formation of Spray-Dried TEMPO-Oxidized Cellulose Nanofiber Particles. ACS Appl. Polym. Mater. 2022, 4 (9), 6700–6709. https://doi.org/10.1021/acsapm.2c01063.
(75) Wu, Z. X.; Waldron, K.; Zhang, X.; Li, Y. Q.; Wu, L.; Wu, W. D.; Chen, X. D.; Zhao, D. Y.; Selomulya, C. Spray-Drying Water-Based Assembly of Hierarchical and Ordered Mesoporous Silica Microparticles with Enhanced Pore Accessibility for Efficient Bio-Adsorption. J. Colloid Interface Sci. 2019, 556, 529–540. https://doi.org/10.1016/j.jcis.2019.08.084.
(76) Aceituno Melgar, V. M.; Ahn, H.; Kim, J.; Othman, M. R. Highly Selective Micro-Porous ZIF-8 Membranes Prepared by Rapid Electrospray Deposition. J. Ind. Eng. Chem. 2015, 21, 575–579. https://doi.org/10.1016/j.jiec.2014.03.021.
(77) Troyano, J.; Çamur, C.; Garzón-Tovar, L.; Carné-Sánchez, A.; Imaz, I.; Maspoch, D. Spray-Drying Synthesis of MOFs, COFs, and Related Composites. Acc. Chem. Res. 2020, 53 (6), 1206–1217. https://doi.org/10.1021/acs.accounts.0c00133.
(78) Kaur, N. Catalytic Conversion of CO2 to Value-Added Products Using MOF-199. 2022. https://doi.org/10.24124/2022/59305.
(79) Marquez, A. G.; Horcajada, P.; Grosso, D.; Ferey, G.; Serre, C.; Sanchez, C.; Boissiere, C. Green Scalable Aerosol Synthesis of Porous Metal–Organic Frameworks. Chem. Commun. 2013, 49 (37), 3848–3850. https://doi.org/10.1039/C3CC39191D.
(80) Wu, Z.; Lin, Y.; Xing, J.; Zhang, M.; Wu, J. Surface-Tension-Confined Assembly of a Metal–Organic Framework in Femtoliter Droplet Arrays. RSC Adv. 2018, 8 (7), 3680–3686. https://doi.org/10.1039/C7RA13250F.
(81) Tang, Q.; Li, Y. F.; Zhou, Z.; Chen, Y. S.; Chen, Z. F. Tuning Electronic and Magnetic Properties of Wurtzite ZnO Nanosheets by Surface Hydrogenation. ACS Appl. Mater. Interfaces 2010, 2 (8), 2442–2447. https://doi.org/10.1021/am100467j.
(82) Wang, S.-S.; Su, H.-Y.; Gu, X.-K.; Li, W.-X. Differentiating Intrinsic Reactivity of Copper, Copper–Zinc Alloy, and Copper/Zinc Oxide Interface for Methanol Steam Reforming by First-Principles Theory. J. Phys. Chem. C 2017, 121 (39), 21553–21559. https://doi.org/10.1021/acs.jpcc.7b07703.
(83) Gianolio, D.; Higham, M. D.; Quesne, M. G.; Aramini, M.; Xu, R.; Large, A. I.; Held, G.; Velasco-Vélez, J.-J.; Haevecker, M.; Knop-Gericke, A.; Genovese, C.; Ampelli, C.; Schuster, M. E.; Perathoner, S.; Centi, G.; Catlow, C. R. A.; Arrigo, R. Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO2 over C-Supported Cu-Based Systems. ACS Catal. 2023, 13 (9), 5876–5895. https://doi.org/10.1021/acscatal.3c01288.
(84) Peinado, C.; Liuzzi, D.; Sanchís, A.; Pascual, L.; Peña, M. A.; Boon, J.; Rojas, S. In Situ Conditioning of CO2-Rich Syngas during the Synthesis of Methanol. Catalysts 2021, 11 (5), 534. https://doi.org/10.3390/catal11050534.
(85) Han, X. Y.; Li, M. S.; Chang, X.; Hao, Z. W.; Chen, J. Y.; Pan, Y. T.; Kawi, S.; Ma, X. B. Hollow Structured Cu@ZrO2 Derived from Zr-MOF for Selective Hydrogenation of CO2 to Methanol. J. Energy Chem. 2022, 71, 277–287. https://doi.org/10.1016/j.jechem.2022.03.034.
(86) Zhang, L.; Xing, X.; Liu, Y.; Shi, W.; Wang, M. Directional Methanolysis of Kitchen Waste for the Co-Production of Methyl Levulinate and Fatty Acid Methyl Esters: Catalytic Strategy and Machine Learning Modeling. Bioresour. Technol. 2023, 367, 128274. https://doi.org/10.1016/j.biortech.2022.128274.
(87) Yarahmadi, H.; Salamah, S. K.; Kheimi, M. Synthesis of an Efficient MOF Catalyst for the Degradation of OPDs Using TPA Derived from PET Waste Bottles. Sci. Rep. 2023, 13 (1), 19136. https://doi.org/10.1038/s41598-023-46635-6.
(88) Kang, M. J.; Yu, H. J.; Jegal, J.; Kim, H. S.; Cha, H. G. Depolymerization of PET into Terephthalic Acid in Neutral Media Catalyzed by the ZSM-5 Acidic Catalyst. Chem. Eng. J. 2020, 398, 125655. https://doi.org/10.1016/j.cej.2020.125655.
(89) Umar, Y.; Aboelazayem, O.; Gadalla, M. A.; Saha, B. Enhanced Biodiesel Production with Improved Oxidation Stability by Water Addition to Supercritical Methanolysis. Can. J. Chem. Eng. 2022, 100 (9), 2587–2607. https://doi.org/10.1002/cjce.24475.
(90) Lin, Y.-S.; Tu, J.-Y.; Tsai, D.-H. Steam-Promoted Methane-CO2 Reforming by NiPdCeOx@SiO2 Nanoparticle Clusters for Syngas Production. Int. J. Hydrog. Energy 2021, 46 (49), 25103–25113. https://doi.org/10.1016/j.ijhydene.2021.05.053.
(91) Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X. Insights into the Influence of CeO2 Crystal Facet on CO2 Hydrogenation to Methanol over Pd/CeO2 Catalysts. ACS Catal. 2020, 10 (19), 11493–11509. https://doi.org/10.1021/acscatal.0c03324.
(92) Yin, Y.; Hu, B.; Li, X.; Zhou, X.; Hong, X.; Liu, G. Pd@zeolitic Imidazolate Framework-8 Derived PdZn Alloy Catalysts for Efficient Hydrogenation of CO2 to Methanol. Appl. Catal. B Environ. 2018, 234, 143–152. https://doi.org/10.1016/j.apcatb.2018.04.024.
(93) Han, A.; Ding, J.; Zhong, Q. Role of Single-Atom Pd in Cu/ZrO2 Catalysts for CO2 Hydrogenation to Methanol. Colloids Surf. Physicochem. Eng. Asp. 2022, 641, 128535. https://doi.org/10.1016/j.colsurfa.2022.128535.
(94) Pan, H.; Ma, B.; Zhou, L.; Hu, Y.; Shakouri, M.; Guo, Y.; Liu, X.; Wang, Y. Highly Efficient CuPd0.1/γ-Al2O3 Catalyst with Isolated Pd Species for CO2 Hydrogenation to Methanol. ACS Sustain. Chem. Eng. 2023, 11 (19), 7489–7499. https://doi.org/10.1021/acssuschemeng.3c00600.
(95) José Faria, D.; Santos, L. M. dos; Longaray Bernard, F.; Pinto, I. S.; Resende, M. A. C. da M.; Einloft, S. Dehydrating Agent Effect on the Synthesis of Dimethyl Carbonate (DMC) Directly from Methanol and Carbon Dioxide. RSC Adv. 2020, 10 (57), 34895–34902. https://doi.org/10.1039/D0RA06034H.
(96) Faria, D. J.; dos Santos, L. M.; Bernard, F. L.; Pinto, I. S.; Romero, I. P.; Chaban, V. V.; Einloft, S. Performance of Supported Metal Catalysts in the Dimethyl Carbonate Production by Direct Synthesis Using CO2 and Methanol. J. CO2 Util. 2021, 53, 101721. https://doi.org/10.1016/j.jcou.2021.101721.
(97) Liu, H.; Zhu, D.; Jia, B.; Huang, Y.; Cheng, Y.; Luo, X.; Liang, Z. Study on Catalytic Performance and Kinetics of High Efficiency CeO2 Catalyst Prepared by Freeze Drying for the Synthesis of Dimethyl Carbonate from CO2 and Methanol. Chem. Eng. Sci. 2022, 254, 117614. https://doi.org/10.1016/j.ces.2022.117614.
(98) Xuan, K.; Chen, S.; Pu, Y.; Guo, Y.; Guo, Y.; Li, Y.; Pu, C.; Zhao, N.; Xiao, F. Encapsulating Phosphotungstic Acid within Metal-Organic Framework for Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. J. CO2 Util. 2022, 59, 101960. https://doi.org/10.1016/j.jcou.2022.101960.