研究生: |
林志嘉 Lin, Chih-Chia |
---|---|
論文名稱: |
高產率偏振糾纏光子之產生及量測 Generation and measurement of polarization-entangled photons with high flux |
指導教授: |
褚志崧
Chuu, Chih-Sung |
口試委員: |
王立邦
Wang, Li-Bang 陳岳男 Chen, Yueh-Nan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 糾纏光子對 、偏振糾纏 、量子通訊 、量子資訊 |
外文關鍵詞: | Entangled photon pair, Polarization entanglement, Quantum communication, Quantum information |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著量子力學的發展,量子資訊漸漸變成一門獨立的學問,尤其在量子通訊的領域中光子扮演了非常重要的角色,因此如何產生良好的單光子以及糾纏光子源可以說是最基本也是最核心的課題。
在本實驗中我們使用高產率時間-能量糾纏光子源,透過Photodetector Post-Selection的方式產生預期detection rates約可為13000(s-1/mW)的高效率偏振糾纏光子,與過去用同晶體得到的探測效率相比仍然算高。我們以CHSH inequality以及CHSH like steering inequality驗證了這對糾纏光子彼此之間具有量子的非局域性以及操控性。最後調變時間-能量糾纏光子之間的頻率以及時間的可區分性,並用HOM 干涉儀去分析調變對總波函數造成的影響。
With the development of quantum mechanics, quantum information gradually became an independent subject. In this subject, photon plays a very important role; therefore, how to build a single photon source and also purity entangled bi-photon source are the core issues of the subject.
We use high detected rate time-energy entangled photons to generate polarization entangled photons with high flux by photodetector post-selection. Then, it is expected to have the detection rate up to 13000(s-1/mW) which is relatively high compared with the previous work. Furthermore, we verified our polarization entangled photons possesses quantum nonlocality and steerability by calculating CHSH inequality and CHSH like steering inequality. In the end, we manipulate either the frequency or time distinguishability between a pair of the time-energy entangled photons to analyze the properties of the total wavefunction with the help of Hong-Ou-Mandel interferometer.
[1] K. Ekert, Quantum Cryptography Based on Bell's Theorem, Phys. Rev. Lett. 67, 661 (1991).
[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein–Podolsky–Rosen Channels, Phys. Rev. Lett. 70, 1895–1899 (1993)
[3] Robert W. Boyd, Nonlinear Optics, Third Edition, Academic Press, 2008
[4] C.-S. Chuu, ABCD Formulism for Spontaneous Parametric Down Conversion, Physics Department, National Tsing Hua University, Taiwan
[5] Kirk T. McDonald. Density-Matrix Description of the EPR “Paradox”. Joseph Henry Laboratories, Princeton University, Princeton. 31 Marzo 2005, 3 Aprile 2013.
[6] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777-780 (1935).
[7] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195-200 (1964).
[8] Valerio Scarani. The device-independent outlook on quantum physics (lecture notes on the power of Bell’s theorem). arXiv preprint arXiv:1303.3081, 2013.
[9] J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38, 447 (1966).
[10] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969).
[11] Eric G. Cavalcanti, Christopher J. Foster, Maria Fuwa, and Howard M. Wiseman, Analog of the Clauser–Horne–Shimony–Holt inequality for steering, J. Opt. Soc. Am. B 32, A74-A81 (2015)
[12] J. S. Lundeen, Generalized Measurement and Post-selection in Optical Quantum Information, Ph.D. thesis, University of Toronto (2006).
[13] P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, Compact source of polarization-entangled photon pairs, Opt. Express 12, 276-281 (2004).
[14] Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)
[15] C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter, Phys. Rev. A 69, 013807 (2004).
[16] M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Generation of ultra-bright tunable polarization entanglement without spatial, spectral, or temporal constraints, Phys. Rev. A 69, 041801 (2004).
[17] T. Kim, M. Fiorentino, and F. N. C. Wong, Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer, Phys. Rev. A 73, 012316 (2006).
[18] Alessandro Fedrizzi, Thomas Herbst, Andreas Poppe, Thomas Jennewein, and Anton Zeilinger, A wavelength-tunable fiber-coupled source of narrowband entangled photons, Opt. Express 15, 15377-15386 (2007).
[19] Sang Min Lee, Heonoh Kim, Myoungsik Cha, and Han Seb Moon, Polarization-entangled photon-pair source obtained via type-II non-collinear SPDC process with PPKTP crystal, Opt. Express 24, 2941-2953 (2016).
[20] Youn-Chang Jeong, Kang-Hee Hong, and Yoon-Ho Kim, Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser, Opt. Express 24, 1165-1174 (2016).
[21] B. J. Pearson and D. P. Jackson, A hands-on introduction to single photons and quantum mechanics for undergraduates, Am. J. Phys. 78, 471 (2010).