研究生: |
柯奕廷 Ke, Yi-Ting |
---|---|
論文名稱: |
利用石蠟鍍膜蒸氣瓶內熱原子產生單光子對之研究 Biphoton generation with a paraffin-coated cell of heated atomic vapor |
指導教授: |
余怡德
Yu, Ite A. |
口試委員: |
陳應誠
Chen, Ying-Cheng 褚志崧 Chuu, Chih-Sung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 石蠟鍍膜蒸氣瓶 、銣原子 87 、光子對 、超精細光幫浦 、電磁波引發透明 、四波混頻 |
外文關鍵詞: | Electromagnetically induced transparency, Four-wave mixing, hyperfine optical pumping, paraffin coated vapor cell, Biphoton, Rubidium 87 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究如何以石蠟鍍膜蒸氣瓶內熱原子產生高訊號背景比的光子對,我們利用超精細光幫浦降低光子對的背景訊號、以石蠟鍍膜蒸氣瓶降低居量回流率並提高原子基態的相干率、改變實驗系統參數,成功產生高訊號背景比的光子對訊號。
研究內容主要分為兩部分:第一部分以理論計算最佳的超精細光幫浦參數,藉此降低由耦合光基態居量產生拉曼躍遷的背景訊號。前半部模擬熱原子N型系統,分析EIT光譜的行為,並解析超精細光幫浦作用下EIT分裂現象;後半部模擬超精細光幫浦的光搬運效應,解析拉曼躍遷背景訊號在不同超精細光幫浦失諧條件下強度變化。最後統整以上結果,給出最佳的超精細光幫浦參數。
第二部分為實驗上製造高訊號背景比的光子對,我們比較更換石蠟鍍膜蒸氣瓶前後的系統差異。之後,我們發現光子對的背景訊號分為兩種:拉曼躍遷的背景訊號與同一時間產生兩對光子對造成的背景訊號。藉由改變系統各項參數,降低這兩種背景來源,最佳化光子對訊號背景比,我們成功在2019/08/05製造訊號背景比13:1的光子對訊號。
This thesis studies signal-to-background ratio (SBR) biphoton pairs with a paraffin-coated cell of heated atomic vapor. Several methods are applied to improve SBR of biphoton pairs. We use a hyperfine optical pumping (HOP) field to reduce the population in the ground state driven by the coupling field. Additionally, we change the regular vapor cell into a paraffin-coated vapor cell, being also able to reduce the population in the ground state driven by the coupling field. Such reduction of the population can decrease the fluorescence background in the probe SPCM, which is produced by the spontaneous Raman transition induced by the coupling field. By optimizing the experimental parameters in our system, we successfully generate biphotons with a high SRB.
There will be two parts in this thesis. In chapters 1-6, we present the theoretical simulation of the EIT spectrum under the effect of HOP. We first study the EIT spectrum of thermal atomic N-type system and explain why the EIT peak splits if HOP is on resonance. After that, we simulate the optical pumping effect under the HOP, and discuss how the fluorescence background in the probe SPCM can vary with the HOP frequency. According to the study above, we will find out the best HOP parameters to optimize the SRB in the biphoton generation.
In chapters 7~ 13, the experimental result of biphoton generation is presented. Firstly, we compare the system and the EIT spectrum, before and after the regular vapor cell was replaced by the paraffin-coated cell. Then, we show that the background in the probe SPCM comes from two sources: the fluorescence photons from the spontaneous Raman transition induced by the coupling field, and the probe photons from the second biphoton pair which is temporally nearby the first biphoton pair. By optimizing the parameters of the system, we successfully increased the SBR to 13 on August 5, 2019.
[1] Wang, G., et al. (2018). "Ultranarrow-bandwidth filter based on a thermal EIT medium." Scientific Reports 8(1): 7959.
[2] 張藳方,“單光子的高效率同調波長轉換之實現及頻域的Hong-Ou-Mandel干涉之研究”,國立清華大學,博士論文,2018
[3] 陳嘉懋,“雙光子訊號的背景雜訊之系統性研究”,國立清華大學,碩士論文,2018
[4] 黃怡瑄,“利用熱銣原子蒸氣產生單光子對之研究”,國立清華大學,碩士論文,2018
[5] 趙鎧琳,“高阻絕率的單光子偵測系統之研發”,國立清華大學,碩士論文,2018
[6] 賴怡樺,“四波混頻的雙光子備製與室溫原子的雷德堡-電磁波引發透明光譜”,國立清華大學,碩士論文,2018
[7] 游秩群,熱原子的電磁波引發透明光譜及冷原子的四波混頻過程相位不匹配之理論研究”,國立清華大學,碩士論文,2018
[8] Palittapongarmpim, P., et al. (2012). "A Monolithic Filter Cavity for Experiments in Quantum Optics." The Review of scientific instruments 83: 066101.