研究生: |
林育如 Lin, Yu-Ru |
---|---|
論文名稱: |
反轉式與無接面式奈米薄片通道多閘極電晶體與非揮發性記憶體之研究 Study of Inversion and Junctionless Nanosheet Channel on Multi-gate Field Effect Transistors and Non-Volatile Memory Devices |
指導教授: |
吳永俊
Wu, Yung-Chun 林育賢 Lin, Yu-Hsien |
口試委員: |
劉柏村
Liu, Po-Tsun 張廖貴術 ChangLiao, Kuei-Shu 巫勇賢 Wu, Yung-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 134 |
中文關鍵詞: | 無接面式場效電晶體 、堆疊式奈米薄片 、非揮發性記憶體 、環繞式閘極 |
外文關鍵詞: | Junctionless Field Effect Transistor, Stacked Nanosheet |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應市場需求,電子產品不僅要追求高速、高效能,必須兼備低耗電與低成本。現今全球各大半導體廠面對元件持續的微縮,製程技術或達到良好元件性能的困難度已隨之上升,單純地縮減通道長度或將介電層厚度持續降低已無法得到良好的電流開關比、高電流驅動力、低漏電和極佳可靠度的需求,因此開發出一個滿足高性能與可擴展性的目標相當重要。本論文探討反轉式與無接面式奈米薄片通道多閘極電晶體與非揮發性記憶體,以符合未來電晶體技術的可能性。本論文共分為三個部份,(1)超薄奈米薄片無接面式場效電晶體,(2)堆疊式奈米薄片通道之場效電晶體,(3)氮化物介面缺陷應用於SONOS型非揮發性記憶體。
第一部份主要以奈米薄片通道無接面式電晶體為主,首先探討鎳矽化物應用於無接面式電晶體接觸窗口,對於鎳矽化物薄膜,採用兩步驟退火和鈦覆蓋層形成具有均勻及低片電阻的鎳矽化物薄膜,相較於接觸窗口無鎳矽化物元件,此鎳矽化物於接觸窗口元件具有更高的驅動電流和低電阻。此外,第一部份亦提出奈米薄片無接面式電晶體搭配混合式反參雜通道結構,藉由不同型參雜之結構設計,在P型與N型介面產生空乏區,使通道等效厚度變薄,以獲得較佳的關閉特性,此外,藉由模擬結果得知,溝槽結構對於此元件為最重要的關鍵因素。
第二部份提出以堆疊式奈米薄片通道的電晶體,首先提出堆疊奈米薄片無接面式電晶體,比較單根與雙根通道結構,以及多閘極與環繞式閘極結構之特性,由實驗結果得知,堆疊式奈米薄片無接面式環繞式閘極電晶體有較佳的特性以及溫度設計靈活性,進一步利用三維半導體元件模擬技術,提出堆疊奈米薄片無接面式電晶體結合混合式反參雜通道結構,為堆疊無接面式電晶體提供另一個應用。接著,提出堆疊奈米薄片反轉式閘極與環繞式閘極電晶體,並比較平板通道與奈米薄片通道之特性。最後,探討無接面式及反轉式堆疊通道電晶體實驗分析。簡而言之,堆疊通道電晶體具有成為微縮矽電晶體的潛力候選結構,並可能用於先進三維堆疊的應用。
最後,提出以雙層氮化物中間介面缺陷作為額外電荷儲存層的溝槽結構無接面式非揮發性記憶體,此記憶體元件相較於傳統單層氮化物非揮發性記憶體具有較快的寫入抹除速度、較佳的重覆抹寫耐久度以及極佳的保存能力。進一步,提出奈米薄片通道環繞式閘極結構非揮發性記憶體於雙層氮化物中間介面缺陷及矽奈米點作為電荷儲存層的比較,實驗結果得知雙層氮化物為電荷儲存層,經過104次抹寫後仍具有86%記憶窗口,並利用溫度加速測試方法,推算此記憶體結構經過十年後仍可保存42%的記憶窗口。此雙層氮化物介面缺陷具有較佳的均勻性,除了有效提升記憶體可靠度特性,更有機會可以整合於未來三維堆疊之記憶體結構。
In response to market demands, the electronic products pursue not only the higher speed and better performance, but also less power consumption and lower cost. The Semiconductor ICs manufacturing companies still follow Moore's law to scaling. The accompanying difficulties in either developing required process technology or enhancing device performance are also increased. Simply shrinking the channel length and/or the dielectric thickness can no longer realize the excellent switching ratio, high driving capability, low leakage current and acceptable reliability. Therefore, it is important to develop a target that suffices high performance and scalability. This thesis investigates the inversion and junctionless nanosheet channel with multi-gate field-effect transistor and non-volatile memory for the possibility of future transistor technology. This thesis is divided into three parts to demonstrate the (1) ultra-thin nanosheet junctionless field-effect transistor, (2) stacked nanosheet channels field-effect transistor, (3) nitride interface defects in SONOS-type non-volatile memory.
In the first part, an ultra-thin poly-Si nanosheet junctionless field-effect transistor with nickel silicide contact was demonstrated successfully. For the nickel silicide film, two-step annealing and a Titanium capping layer were adopted to form an ultra-thin uniform nickel silicide film with low sheet resistance. The junctionless device with nickel silicide contact exhibited higher driving current, and low resistance than the junctionless device the without nickel silicide contact. Moreover, the trench and raised source and drain structure with gate-all-around based on the p-type/n-type hybrid nanosheet junctionless field-effect transistor was also demonstrated. The junctionless device with hybrid structure can also provide depletion region between p-type and n-type interface to electrically reduce channel thickness and turn off the device easily. Notably, as the simulation result, the trench structure is the most important factor of this device.
In the second part, the stacked nanosheet channels field-effect transistors had been demonstrated. At first, this part comprehensively investigated the stacked nanosheet-type channels based on the junctionless field-effect transistors, including single and stacked channel structures, and multi-gate and gate-all-around structures. The stacked gate-all-around junctionless field-effect transistors exhibited superior performance and excellent temperature design flexibility. Furthermore, this part also provided the hybrid p-type/n-type/p-type stacked channels device based on the junctionless field-effect transistor by using 3D TCAD simulated analysis for the stacked structure another application. Second, the stacked nanosheet-type double-channels with multi-gate and gate-all-around inversion mode field-effect transistors were also demonstrated. For comparison, the stacked planar device which top view width is equal to the stacked nanosheet device was fabricated. Final, this part demonstrated an experimental comparative analysis of the stacked nanosheet channels integrated junctionless and inversion mode field-effect transistors in Si-based technology. Briefly, the stacked nanosheet channels field-effect transistor emerges as promising candidate for scaling down the Si FET and potentially uses in advanced 3-D stacked ICs applications.
In the final part, the junctionless field-effect transistor based on trench structure non-volatile memory with doubly stacked Si3N4 defect charge trapping layers had been demonstrated. The device exhibits high program/erase (P/E) speed, good endurance and excellent data retention at 85oC which achieve memory industry requirement. The silicon-oxide-nitride-nitride-oxide-silicon (SONNOS) and silicon-oxide-nitride-silicon -nanocrystals-nitride-oxide-silicon (SOncOS) nonvolatile memory based on nanosheets gate-all-around structure were further compared. The SONNOS and SOncOS devices exploit doubly stacked Si3N4 interface defects and silicon nanocrystals (Si-NCs) as charge trapping layers, respectively. Experimental results reveal that the SONNOS device retains 86% memory window after 104 program/erase cycles, and the memory window retains 42% of the originally stored charge after ten years. Such doubly stacked Si3N4 layers provide additional and uniform charge trapping sites in charge trapping layer, improving the memory performance of nonvolatile memory. This simple double stacked Si3N4 structure will be easily integrated in 3D NAND flash memory applications.
Chapter 1
[1.1] H. H. Radamson, Y. Zhang, X. He, H. Cui, J. Li, J. Xiang, J. Liu, S. Gu, and G. Wang, "The Challenges of Advanced CMOS Process from 2D to 3D," Applied Sciences, vol. 7, 2017. doi:10.3390/app7101047.
[1.2] N. Horiguchi, "CMOS Device Architecture Evolution and Metrology Challenges," in 2018 Workshop on Characterization and Metrology for 3D CMOS, 2018.
[1.3] International Roadmap for Devices and Systems (IRDS™) 2017 Edition. [Online]. Available: https://irds.ieee.org/roadmap-2017
[1.4] Zsolt Tőkei, " Sub-5nm Interconnect Trends and Opportunities," in 2017 IEEE International Electron Devices Meeting, 2017, Short Course 1: Boosting Performance, Ensuring Reliability, Managing Variation in sub-5nm CMOS.
[1.5] J. P. Colinge, C. W. Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, and R. Yu, "Junctionless Transistors: Physics and Properties," in Semiconductor-On-Insulator Materials for Nanoelectronics Applications, A. Nazarov, J. P. Colinge, F. Balestra, J.-P. Raskin, F. Gamiz, and V. S. Lysenko, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 187-200.
[1.6] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, and K. Zhang, " A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2SRAM cell size," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 3.7.1-3.7.3. doi:10.1109/IEDM.2014.7046976.
[1.7] M. G. Bardon, Y. Sherazi, D. Jang, D. Yakimets, P. Schuddinck, R. Baert, H. Mertens, L. Mattii, B. Parvais, A. Mocuta, and D. Verkest, "Power-performance Trade-offs for Lateral NanoSheets on Ultra-Scaled Standard Cells," in 2018 IEEE Symposium on VLSI Technology, 2018, pp. 143-144. doi:10.1109/VLSIT.2018.8510633.
[1.8] S. Barraud, V. Lapras, B. Previtali, M. P. Samson, J. Lacord, S. Martinie, M. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J. M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J. C. Barbé, M. Vinet, and T. Ernst, "Performance and design considerations for gate-all-around stacked-NanoWires FETs," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 29.2.1-29.2.4. doi:10.1109/IEDM.2017.8268473.
[1.9] L. Cai, W. Chen, G. Du, X. Zhang, and X. Liu, "Layout Design Correlated With Self-Heating Effect in Stacked Nanosheet Transistors," IEEE Transactions on Electron Devices, vol. 65, pp. 2647-2653 2018. doi:10.1109/TED.2018.2825498.
[1.10] N. Loubet, T. Hook, P. Montanini, C. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017, pp. T230-T231. doi:10.23919/VLSIT.2017.7998183.
[1.11] B.-H. Lee, M.-H. Kang, D.-C. Ahn, J.-Y. Park, T. Bang, S.-B. Jeon, J. Hur, D. Lee, and Y.-K. Choi, "Vertically Integrated Multiple Nanowire Field Effect Transistor," Nano Letters, vol. 15, pp. 8056-8061, 2015. doi:10.1021/acs.nanolett.5b03460.
[1.12] J. P. Colinge,”FinFETs and Other Multi-Gate Transistors”, Springer, 2008. doi:10.1007/978-0-387-71752-4.
[1.13] S. M. Sze, Kwok K. Ng, ”Physics of semiconductor devices” 3rd edition, John Wiley & Sons, Inc, 2006. doi: 10.1002/0470068329.
Chapter 2
[2.1] J. O. Olowolafe, M. A. Nicolet, and J. W. Mayer, "Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films," Thin Solid Films, vol. 38, pp. 143-150, 1976. doi:https://doi.org/10.1016/0040-6090(76)90221-2.
[2.2] T. Morimoto, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, H. Okana, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, "A NiSi salicide technology for advanced logic devices," in International Electron Devices Meeting, 1991, pp. 653-656. doi:10.1109/IEDM.1991.235387.
[2.3] H. Iwai, T. Ohguro, and S.-i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectronic Engineering, vol. 60, pp. 157-169, 2002. doi:https://doi.org/10.1016/S0167-9317(01)00684-0.
[2.4] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, R. Lindsay, and K. Maex, "Ni- and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, 2003. doi:https://doi.org/10.1016/S0167-9317(03)00370-8.
[2.5] A. Dahal, J. Gunasekera, L. Harringer, D. K. Singh, and D. J. Singh, "Metallic nickel silicides: Experiments and theory for NiSi and first principles calculations for other phases," Journal of Alloys and Compounds, vol. 672, pp. 110-116, 2016. doi:https://doi.org/10.1016/j.jallcom.2016.02.133.
[2.6] C. Lavoie, F. M. d’Heurle, C. Detavernier, and C. Cabral, "Towards implementation of a nickel silicide process for CMOS technologies," Microelectronic Engineering, vol. 70, pp. 144-157, 2003. doi:https://doi.org/10.1016/S0167-9317(03)00380-0.
[2.7] W. Huang, L.-C. Zhang, Y.-Z. Gao, H.-Y. Jin, B.-J. Ning, and G.-Q. Zhang, "Effect of a thin W interlayer on the thermal stability and electrical characteristics of NiSi film," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 23, pp. 2304-2308 2005. doi:10.1116/1.2101647.
[2.8] A. Vengurlekar, S. Balasubramanian, S. Ashok, D. Theodore, and D. Chi, "Influence of hydrogen plasma surface treatment of Si substrate on nickel silicide formation," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 24, pp. 1449-1454 2006. doi:10.1116/1.2200373.
[2.9] W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, "Effect of a titanium cap in reducing interfacial oxides in the formation of nickel silicide," Journal of Applied Physics, vol. 91, pp. 2901-2909 2002. doi:10.1063/1.1448672.
[2.10] N. G. Toledo, P. S. Lee, and K. L. Pey, "Characterization of the junction leakage of Ti-capped Ni-silicided junctions," Thin Solid Films, vol. 462-463, pp. 202-208, 2004. doi:https://doi.org/10.1016/j.tsf.2004.05.099.
[2.11] C.-Y. Ho and Y.-J. Chang, "Evaluation of Schottky barrier source/drain contact on gate-all-around polycrystalline silicon nanowire MOSFET," Materials Science in Semiconductor Processing, vol. 61, pp. 150-155, 2017. doi:https://doi.org/10.1016/j.mssp.2016.11.029.
[2.12] W. Zhenping, C. Xinhua, and F. Jingxun, "Nickel silicide anneal process research for 28nm CMOS node," in 2017 China Semiconductor Technology International Conference (CSTIC), 2017, pp. 1-4. doi:10.1109/CSTIC.2017.7919805.
[2.13] Ö. Tüzün Özmen, M. Karaman, and R. Turan, "Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique," Thin Solid Films, vol. 551, pp. 181-187, 2014. doi:https://doi.org/10.1016/j.tsf.2013.11.098.
[2.14] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," Nature Nanotechnology, vol. 5, p. 225, online 2010. doi:10.1038/nnano.2010.15
[2.15] C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, "Junctionless multigate field-effect transistor," Applied Physics Letters, vol. 94, p. 053511, 2009. doi:10.1063/1.3079411.
[2.16] L. Ansari, B. Feldman, G. Fagas, J.-P. Colinge, and J. C. Greer, "Simulation of junctionless Si nanowire transistors with 3 nm gate length," Applied Physics Letters, vol. 97, p. 062105, 2010. doi:10.1063/1.3478012.
[2.17] V. Thirunavukkarasu, Y.-R. Jhan, Y.-B. Liu, E. D. Kurniawan, Y. R. Lin, S.-Y. Yang, C.-H. Cheng, and Y.-C. Wu, "Gate-all-around junctionless silicon transistors with atomically thin nanosheet channel (0.65 nm) and record sub-threshold slope (43 mV/dec)," Applied Physics Letters, vol. 110, p. 032101, 2017. doi:10.1063/1.4974255.
[2.18] M. S. Yeh, Y. C. Wu, M. H. Wu, M. H. Chung, Y. R. Jhan, and M. F. Hung, "Characterizing the Electrical Properties of a Novel Junctionless Poly-Si Ultrathin-Body Field-Effect Transistor Using a Trench Structure," IEEE Electron Device Letters, vol. 36, pp. 150-152, 2015. doi:10.1109/LED.2014.2378785.
[2.19] M. S. Yeh, Y. C. Wu, M. H. Wu, Y. R. Jhan, M. H. Chung, and M. F. Hung, "High performance ultra-thin body (2.4nm) poly-Si junctionless thin film transistors with a trench structure," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 26.6.1-26.6.4. doi:10.1109/IEDM.2014.7047115.
[2.20] C. Chia-Hsin, I. C. Lee, L. Dai-Che, and C. Huang-Chung, "Planar junctionless poly-Si thin-film transistors with single gate and double gate," Japanese Journal of Applied Physics, vol. 53, p. 06JE07, 2014.
[2.21] H. B. Chen, Y. C. Wu, C. Y. Chang, M. H. Han, N. H. Lu, and Y. C. Cheng, "Performance of GAA poly-Si nanosheet (2nm) channel of junctionless transistors with ideal subthreshold slope," in 2013 Symposium on VLSI Technology, 2013, pp. T232-T233.
[2.22] S. Migita, Y. Morita, M. Masahara, and H. Ota, "Electrical performances of junctionless-FETs at the scaling limit (LCH=3 nm)," in 2012 International Electron Devices Meeting, 2012, pp. 8.6.1-8.6.4. doi:10.1109/IEDM.2012.6479006.
[2.23] L.-C. Chen, M.-S. Yeh, Y.-R. Lin, K.-W. Lin, M.-H. Wu, V. Thirunavukkarasu, and Y.-C. Wu, "The physical analysis on electrical junction of junctionless FET," AIP Advances, vol. 7, p. 025301, 2017. doi:10.1063/1.4975768.
[2.24] L. C. Chen, M. S. Yeh, K. W. Lin, M. H. Wu, and Y. C. Wu, "Junctionless Poly-Si Nanowire FET With Gated Raised S/D," IEEE Journal of the Electron Devices Society, vol. 4, pp. 50-54, 2016. doi:10.1109/JEDS.2016.2514478.
[2.25] Y. R. Jhan, V. Thirunavukkarasu, C. P. Wang, and Y. C. Wu, "Performance Evaluation of Silicon and Germanium Ultrathin Body (1 nm) Junctionless Field-Effect Transistor With Ultrashort Gate Length (1 nm and 3 nm)," IEEE Electron Device Letters, vol. 36, pp. 654-656, 2015. doi:10.1109/LED.2015.2437715.
[2.26] N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017, pp. T230-T231. doi:10.23919/VLSIT.2017.7998183.
[2.27] Y. C. Cheng, H. B. Chen, C. Y. Chang, C. H. Cheng, Y. J. Shih, and Y. C. Wu, "A highly scalable poly-Si junctionless FETs featuring a novel multi-stacking hybrid P/N layer and vertical gate with very high Ion/Ioff for 3D stacked ICs," in 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2. doi:10.1109/VLSIT.2016.7573429.
[2.28] Y. C. Cheng, H. B. Chen, C. S. Shao, J. J. Su, Y. C. Wu, C. Y. Chang, and T. C. Chang, "Performance enhancement of a novel P-type junctionless transistor using a hybrid poly-Si fin channel," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 26.7.1-26.7.4. doi:10.1109/IEDM.2014.7047116.
[2.29] Y.-C. Cheng, H.-B. Chen, C.-Y. Chang, Y.-K. Wu, Y.-J. Shih, C.-S. Shao, and Y.-C. Wu, "Back-gate bias effect on nanosheet hybrid P/N channel of junctionless thin-film transistor with increased Ion versus decreased Ioff," Applied Physics Letters, vol. 107, p. 182105, 2015. doi:10.1063/1.4935247.
Chapter 3
[3.1] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, and K. Zhang, " A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2SRAM cell size," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 3.7.1-3.7.3. doi:10.1109/IEDM.2014.7046976.
[3.2] M. Wang, Y. Lai, S. Syu, W. Liao, W. Lan, and S. Wang, " Electrical characteristics of multi-gate P-channel FinFETs with VT implanting energies under temperature stress," in 2015 International Symposium on Next-Generation Electronics (ISNE), 2015, pp. 1-3. doi:10.1109/ISNE.2015.7131979.
[3.3] D. Moon, S. Choi, J. P. Duarte, and Y. Choi, "Investigation of Silicon Nanowire Gate-All-Around Junctionless Transistors Built on a Bulk Substrate," IEEE Transactions on Electron Devices, vol. 60, pp. 1355-1360, 2013. doi:10.1109/TED.2013.2247763.
[3.4] H. Chen, Y. Wu, C. Chang, M. Han, N. Lu, and Y. Cheng, "Performance of GAA poly-Si nanosheet (2nm) channel of junctionless transistors with ideal subthreshold slope," in 2013 Symposium on VLSI Technology, 2013, pp. T232-T233.
[3.5] B.-H. Lee, J. Hur, M.-H. Kang, T. Bang, D.-C. Ahn, D. Lee, K.-H. Kim, and Y.-K. Choi, "A Vertically Integrated Junctionless Nanowire Transistor," Nano Letters, vol. 16, pp. 1840-1847, 2016. doi:10.1021/acs.nanolett.5b04926.
[3.6] H. Mertens, R. Ritzenthaler, A. Hikavyy, M. S. Kim, Z. Tao, K. Wostyn, S. A. Chew, A. D. Keersgieter, G. Mannaert, E. Rosseel, T. Schram, K. Devriendt, D. Tsvetanova, H. Dekkers, S. Demuynck, A. Chasin, E. V. Besien, A. Dangol, S. Godny, B. Douhard, N. Bosman, O. Richard, J. Geypen, H. Bender, K. Barla, D. Mocuta, N. Horiguchi, and A. V. Thean, "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates," in 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2. doi:10.1109/VLSIT.2016.7573416.
[3.7] Y. M. Lee, M. H. Na, A. Chu, A. Young, T. Hook, L. Liebmann, E. J. Nowak, S. H. Baek, R. Sengupta, H. Trombley, and X. Miao, "Accurate performance evaluation for the horizontal nanosheet standard-cell design space beyond 7nm technology," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 29.3.1-29.3.4. doi:10.1109/IEDM.2017.8268474.
[3.8] S. Kim, M. Guillorn, I. Lauer, P. Oldiges, T. Hook, and M. Na, "Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond," in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2015, pp. 1-3. doi:10.1109/S3S.2015.7333521.
[3.9] M. G. Bardon, Y. Sherazi, D. Jang, D. Yakimets, P. Schuddinck, R. Baert, H. Mertens, L. Mattii, B. Parvais, A. Mocuta, and D. Verkest, "Power-performance Trade-offs for Lateral NanoSheets on Ultra-Scaled Standard Cells," in 2018 IEEE Symposium on VLSI Technology, 2018, pp. 143-144. doi:10.1109/VLSIT.2018.8510633.
[3.10] S. Barraud, V. Lapras, B. Previtali, M. P. Samson, J. Lacord, S. Martinie, M. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J. M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J. C. Barbé, M. Vinet, and T. Ernst, "Performance and design considerations for gate-all-around stacked-NanoWires FETs," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 29.2.1-29.2.4. doi:10.1109/IEDM.2017.8268473.
[3.11] L. Cai, W. Chen, G. Du, X. Zhang, and X. Liu, "Layout Design Correlated With Self-Heating Effect in Stacked Nanosheet Transistors," IEEE Transactions on Electron Devices, vol. 65, pp. 2647-2653, 2018. doi:10.1109/TED.2018.2825498.
[3.12] N. Loubet, T. Hook, P. Montanini, C. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017, pp. T230-T231. doi:10.23919/VLSIT.2017.7998183.
[3.13] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," Nature Nanotechnology, vol. 5, p. 225, online 2010. doi:10.1038/nnano.2010.15.
[3.14] M. S. Yeh, Y. C. Wu, M. H. Wu, M. H. Chung, Y. R. Jhan, and M. F. Hung, "Characterizing the Electrical Properties of a Novel Junctionless Poly-Si Ultrathin-Body Field-Effect Transistor Using a Trench Structure," IEEE Electron Device Letters, vol. 36, pp. 150-152, 2015. doi:10.1109/LED.2014.2378785.
[3.15] D. Hsieh, J. Lin, P. Kuo, and T. Chao, "High-Performance Pi-Gate Poly-Si Junctionless and Inversion Mode FET," IEEE Transactions on Electron Devices, vol. 63, pp. 4179-4184, 2016. doi:10.1109/TED.2016.2611021.
[3.16] S. Kim, B. Lee, J. Hur, J. Park, S. Jeon, S. Lee, and Y. Choi, "A Comparative Study on Hot-Carrier Injection in 5-Story Vertically Integrated Inversion-Mode and Junctionless-Mode Gate-All-Around MOSFETs," IEEE Electron Device Letters, vol. 39, pp. 4-7, 2018. doi:10.1109/LED.2017.2772871.
[3.17] Y. C. Cheng, H. B. Chen, C. Y. Chang, C. H. Cheng, Y. J. Shih, and Y. C. Wu, "A highly scalable poly-Si junctionless FETs featuring a novel multi-stacking hybrid P/N layer and vertical gate with very high Ion/Ioff for 3D stacked ICs," in 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2. doi:10.1109/VLSIT.2016.7573429.
[3.18] Y. C. Cheng, H. B. Chen, C. S. Shao, J. J. Su, Y. C. Wu, C. Y. Chang, and T. C. Chang, "Performance enhancement of a novel P-type junctionless transistor using a hybrid poly-Si fin channel," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 26.7.1-26.7.4. doi:10.1109/IEDM.2014.7047116.
[3.19] Y.-C. Cheng, H.-B. Chen, C.-Y. Chang, Y.-K. Wu, Y.-J. Shih, C.-S. Shao, and Y.-C. Wu, "Back-gate bias effect on nanosheet hybrid P/N channel of junctionless thin-film transistor with increased Ion versus decreased Ioff," Applied Physics Letters, vol. 107, p. 182105, 2015. doi:10.1063/1.4935247.
Chapter 4
[4.1] K. Kahng and S. M. Sze, "A floating gate and its application to memory devices," IEEE Transactions on Electron Devices, vol. 14, pp. 629-629, 1967. doi:10.1109/T-ED.1967.16028.
[4.2] D. Frohman-Bentchkowsky, "Famos—A new semiconductor charge storage device," Solid-State Electronics, vol. 17, pp. 517-529, 1974. doi:https://doi.org/10.1016/0038-1101(74)90169-5.
[4.3] S. Barbara De, C. Gerardi, R. v. Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, S. Serafino, G. Ammendola, M. v. Duuren, P. Goarin, W. Y. Mei, K. v. d. Jeugd, T. Baron, M. Gely, P. Mur, and S. Deleonibus, "Performance and reliability features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS)," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 377-389, 2004. doi:10.1109/TDMR.2004.837209.
[4.4] C.-Y. Lu, K.-Y. Hsieh, and R. Liu, "Future challenges of flash memory technologies," Microelectronic Engineering, vol. 86, pp. 283-286, 2009. doi:https://doi.org/10.1016/j.mee.2008.08.007.
[4.5] M. Specht, R. Kommling, F. Hofmann, V. Klandzievski, L. Dreeskornfeld, W. Weber, J. Kretz, E. Landgraf, T. Schulz, J. Hartwich, W. Rosner, M. Stadele, R. J. Luyken, H. Reisinger, A. Graham, E. Hartmann, and L. Risch, "Novel dual bit tri-gate charge trapping memory devices," IEEE Electron Device Letters, vol. 25, pp. 810-812, 2004. doi:10.1109/LED.2004.838621.
[4.6] M.-S. Yeh, Y.-C. Wu, M.-H. Chung, Y.-R. Jhan, K.-S. Chang-Liao, K.-C. Liu, M.-H. Wu, and M.-F. Hung, "Investigation of p-channel and n-channel junctionless gate-all-around polycrystalline silicon nanowires with silicon nanocrystals nonvolatile memory," Applied Physics Letters, vol. 105, p. 042109, 2014. doi:10.1063/1.4891815.
[4.7] M. Yeh, Y. Wu, K. Liu, M. Hung, Jhan, N. Lu, M. Chung, and M. Wu, "Comprehensive Study of N-Channel and P-Channel Twin Poly-Si FinFET Nonvolatile Memory," IEEE Transactions on Nanotechnology, vol. 13, pp. 814-819, 2014. doi:10.1109/TNANO.2014.2323983.
[4.8] C.-J. Su, T.-K. Su, T.-I. Tsai, H.-C. Lin, and T.-Y. Huang, "A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires," Nanoscale Research Letters, vol. 7, p. 162, 2012. doi:10.1186/1556-276X-7-162.
[4.9] K. Ichikawa, Y. Uraoka, H. Yano, T. Hatayama, T. Fuyuki, E. Takahashi, T. Hayashi, and K. Ogata, "Low Temperature Polycrystalline Silicon Thin Film Transistors Flash Memory with Silicon Nanocrystal Dot," Japanese Journal of Applied Physics, vol. 46, pp. L661-L663, 2007. doi:10.1143/jjap.46.l661.
[4.10] K. Park, J. Choi, J. Sel, V. Kim, C. Kang, Y. Shin, U. Roh, J. Park, J. Lee, J. Sim, S. Jeon, C. Lee, and K. Kim, "A 64-Cell NAND Flash Memory with Asymmetric S/D Structure for Sub-40nm Technology and Beyond," in 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., 2006, pp. 19-20. doi:10.1109/VLSIT.2006.1705196.
[4.11] E. Lai, H. Lue, Y. Hsiao, J. Hsieh, S. Lee, C. Lu, S. Wang, L. Yang, K. Chen, J. Gong, K. Hsieh, J. Ku, R. Liu, and C. Lu, "A Highly Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory," in 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., 2006, pp. 46-47. doi:10.1109/VLSIT.2006.1705209.
[4.12] C. Chen, K. Chang-Liao, K. Wu, and T. Wang, " Improved Erasing Speed in Junctionless Flash Memory Device by HfO2/Si3N4 Stacked Trapping Layer," IEEE Electron Device Letters, vol. 34, pp. 993-995, 2013. doi:10.1109/LED.2013.2265599.
[4.13] Y.-H. Lin, H.-C. You, and C.-H. Chien, "Two-bit/four-level Pr2O3 trapping layer for silicon-oxide-nitride-oxide-silicon-type flash memory," Journal of Vacuum Science & Technology B, vol. 30, p. 011201, 2012. doi:10.1116/1.3668101.
[4.14] H. Lue, T. Hsu, Y. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S. Wang, J. Hsieh, L. Yang, T. Yang, K. Chen, K. Hsieh, and C. Lu, "A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND Flash using junction-free buried channel BE-SONOS device," in 2010 Symposium on VLSI Technology, 2010, pp. 131-132. doi:10.1109/VLSIT.2010.5556199.
[4.15] K. Prall, "Scaling Non-Volatile Memory Below 30nm," in 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop, 2007, pp. 5-10. doi:10.1109/NVSMW.2007.4290561.
[4.16] S. Chen, T. Chang, P. Liu, Y. Wu, P. Lin, B. Tseng, J. Shy, S. M. Sze, C. Chang, and C. Lien, "A Novel Nanowire Channel Poly-Si TFT Functioning as Transistor and Nonvolatile SONOS Memory," IEEE Electron Device Letters, vol. 28, pp. 809-811, 2007. doi:10.1109/LED.2007.903885.
[4.17] H. Chen, Y. Wu, L. Chen, J. Chiang, C. Yang, and C. Chang, "High-Reliability Trigate Poly-Si Channel Flash Memory Cell With Si-Nanocrystal Embedded Charge-Trapping Layer," IEEE Electron Device Letters, vol. 33, pp. 537-539, 2012. doi:10.1109/LED.2012.2184519.
[4.18] K. Lee, M. Kang, S. Seo, D. H. Li, J. Kim, and H. Shin, "Analysis of Failure Mechanisms and Extraction of Activation Energies Ea) in 21-nm nand Flash Cells," IEEE Electron Device Letters, vol. 34, pp. 48-50, 2013. doi:10.1109/LED.2012.2222013.