研究生: |
謝達永 Hsieh, Da-Yung |
---|---|
論文名稱: |
基於車聯網空中計算之載具安全感知訊息廣播頻率控制 AirComp-aided Safety-aware CAM Broadcast Rate Control in Vehicular Networks |
指導教授: |
陳文村
Chen, Wen-Tsuen 許健平 Sheu, Jang-Ping |
口試委員: |
郭建志
Kuo, Jian-Jhih 楊得年 Yang, De-Nian |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 空中計算 、車載網路 、側鏈 、壅塞控制 |
外文關鍵詞: | Vehicular networks, C-V2X sidelink, transmission rate control |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近年來備受關注vehicle-to-everything (V2X)通訊技術中,載具可以定期廣播安全感知訊息 (CAM)給所有周遭的其他載具來提升載具的道路安全性。
在安全感知訊息中,會包含載具的狀態與屬性,例如訊息時間戳記、載具的位置、速度、運動
狀態與車輛種類等等。
然而,來自過時的安全感知訊息的內容與載具安全相關的預測失真,可能會產生潛在的風險與嚴重的載具安全問題。
此外,在不存在沒有基地台的環境,也就是在未覆蓋環境(out-of-coverage)之中,因為沒有基地台在不同的載具之間集中地協調,所以會更容易發生潛在的頻道壅塞問題。
而且要在這樣的環境中,更進一步的權衡頻道壅塞與載具安全,更是一個困難的問題。
在本篇論文中,我們提出了一個有效率的載具安全感知訊息廣播頻率控制策略(DESBRAC),來使載具可以同時考量不同的安全指標並共同決定出安全感知訊息廣播頻率。
我們也考量兩個不同的安全感知訊息廣播頻率的限制與實時測量的指標,來去避免頻道壅塞與提升總體的頻道使用效率。
為了更好的提升與感知安全性,我們提出了一個新的指標立即訊息年齡IAoI來去幫助載具同時考量不同的參數,例如訊息年齡、追蹤誤差與其他安全指標。
我們使用IAoI當作權重來去決定安全感知訊息廣播頻率。
此外,為了解決訊息對時間敏感與潛在的頻道壅塞問題,我們引入了空中計算(AirComp)來幫助載具即時地從周遭載具集合關鍵訊息,並以此訊息估算指標並合作決定安全感知訊息廣播頻率。
最終,分別在兩種不同的載具網路環境下的模擬結果表示,相較於現今其他算法而言,我們的策略可以有效提升約31%的載具安全性。
Promising V2X communication technologies can increase road safety by periodically broadcasting Cooperative Awareness Message (CAM) that contain vehicles’ status and attribute information, such as time, location, velocity, motion state, and vehicle type, to all nearby vehicles.
However, out-of-date information from CAM and prediction deviations may cause potential risks and severe vehicle safety problems.
Moreover, in the out-of-coverage scenario, where there is no base station to centrally coordinate between different vehicles, the absence of a central entity causes more potential issues with channel congestion.
Additionally, it is even harder to solve the trade-off problem of channel congestion and vehicle safety in the out-of-coverage scenario for the same reason.
In this thesis, we propose an efficient safety-aware CAM broadcast rate control strategy termed Decentralized Safety-aware CAM Broadcast Rate Control Strategy (DESBRAC) for vehicles to consider more safety metrics and determine the CAM broadcast rates cooperatively.
We also consider two CAM broadcast rate constraints and real-time metrics to avoid channel congestion and improve the overall channel efficiency.
To further enhance the safety-awareness, we propose a new metric called the Instant AoI (IAoI) that jointly considers different factors such as Age of Information (AoI), Tracking Error (TE), and other safety metrics. We use IAoI as a weight to determine the CAM broadcast rate.
To deal with time-sensitive and potential channel congestion issues, we introduce Over-the-Air Computation (AirComp), a novel aggregation method that helps vehicles instantly aggregate critical information from their nearby vehicles to perform metric estimation and cooperative CAM broadcast rate determination.
Finally, the simulation results based on two different scenarios of vehicular networks show that our strategy can achieve an improvement of about 31% in driving safety compared to the state-of-the-art algorithms.
Bibliography
[1] “FCC modernizes 5.9 GHz band to improve Wi-Fi and automotive safety,” FCC.
(Nov. 2020), [Online]. Available: https : / / www . fcc . gov / document / fcc -
modernizes-59-ghz-band-improve-wi-fi-and-automotive-safety.
[2] Introduction to C-V2X, 80-PE732-62 Rev A, Qualcomm, 2019. [Online]. Available:
https://www.qualcomm.com/media/documents/files/introduction-to-c-
v2x.pdf.
[3] A. Bazzi, A. O. Berthet, C. Campolo, B. M. Masini, A. Molinaro, and A. Zanella,
“On the design of sidelink for cellular V2X: A literature review and outlook for
future,” IEEE Access, vol. 9, pp. 97 953–97 980, 2021.
[4] ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of
Applications; Part 2: Specification of Cooperative Awareness Basic Service,” ETSI,
European Standard (EN) 302 637-2 V1.4.1, Apr. 2019.
[5] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of information in
vehicular networks,” in Proceedings of IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks, 2011.
[6] B. Choudhury, V. K. Shah, A. Dayal, and J. H. Reed, “Joint age of information and
self risk assessment for safer 802.11p based V2V networks,” in Proceedings of IEEE
Conference on Computer Communications (INFOCOM), 2021.
[7] B. Nazer and M. Gastpar, “Computation over multiple-access channels,” IEEE Trans-
actions on Information Theory, vol. 53, pp. 3498–3516, 2007.
[8] J. Li, Y. Zhou, H. Chen, and Y. Shi, “Age of aggregated information: Timely status
update with over-the-air computation,” in Proceedings of IEEE Global Communica-
tions Conference (GLOBECOM), 2020.
[9] ETSI, “Intelligent Transport Systems (ITS); Decentralized Congestion Control Mech-
anisms for Intelligent Transport Systems operating in the 5 GHz range; Access layer
part,” ETSI, Technical Specification (TS) 102 687 V1.2.1, Apr. 2018.
[10] ETSI, “Intelligent Transport Systems (ITS); Congestion Control Mechanisms for the
C-V2X PC5 interface; Access layer part,” ETSI, Technical Specification (TS) 103
574 V1.1.1, Nov. 2018.
[11] G. Bansal, J. B. Kenney, and C. E. Rohrs, “LIMERIC: A Linear Adaptive Message
Rate Algorithm for DSRC Congestion Control,” IEEE Transactions on Vehicular
Technology, vol. 62, pp. 4182–4197, 2013.
[12] N. Lyamin, B. Bellalta, and A. Vinel, “Age-of-Information-Aware Decentralized
Congestion Control in VANETs,” IEEE Networking Letters, vol. 2, no. 1, pp. 33–
37, 2020.
35
[13] S. M. O. Gani, Y. P. Fallah, G. Bansal, and T. Shimizu, “A study of the effectiveness
of message content, length, and rate control for improving map accuracy in auto-
mated driving systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, pp. 405–420, 2019.
[14] A. Baiocchi and I. Turcanu, “A model for the optimization of beacon message age-
of-information in a VANET,” in Proceedings of International Teletraffic Congress
(ITC), 2017.
[15] J. Thunberg, D. Bischoff, F. A. Schiegg, T. Meuser, and A. Vinel, “Unreliable v2x
communication in cooperative driving: Safety times for emergency braking,” IEEE
Access, vol. 9, pp. 148 024–148 036, 2021. DOI: 10.1109/ACCESS.2021.3124450.
[16] F. A. Schiegg, N. Brahmi, and I. Llatser, “Analytical performance evaluation of the
collective perception service in c-v2x mode 4 networks,” in Proceedings of IEEE
Intelligent Transportation Systems Conference (ITSC), 2019, pp. 181–188. DOI: 10.
1109/ITSC.2019.8917214.
[17] F. Peng, Z. Jiang, S. Zhang, and S. Xu, “Piggyback-based distributed mac opti-
mization for v2x sidelink communications,” in Proceedings of IEEE 92nd Vehicular
Technology Conference (VTC2020-Fall), 2020, pp. 1–6. DOI: 10.1109/VTC2020-
Fall49728.2020.9348847.
[18] L. Cao, H. Yin, R. Wei, and L. Zhang, “Optimize semi-persistent scheduling in
nr-v2x: An age-of-information perspective,” in Proceedings of IEEE Wireless Com-
munications and Networking Conference (WCNC), 2022, pp. 2053–2058. DOI: 10.
1109/WCNC51071.2022.9771765.
[19] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air com-
putation,” IEEE Transactions on Wireless Communications, vol. 19, pp. 2022–2035,
2020.
[20] P. Park, P. D. Marco, and C. Fischione, “Optimized over-the-air computation for
wireless control systems,” IEEE Communications Letters, vol. 26, pp. 424–428, 2022.
[21] P. Park, P. Di Marco, and C. Fischione, “Wireless for control: Over-the-air con-
troller,” IEEE Communications Letters, vol. 25, pp. 3437–3441, 2021.
[22] X. Li, Y. Gong, K. Huang, and Z. Niu, Over-the-air integrated sensing, communica-
tion, and computation in iot networks, 2022. [Online]. Available: https://arxiv.
org/abs/2211.03345.
[23] M. Fu, Y. Zhou, Y. Shi, W. Chen, and R. Zhang, “Uav aided over-the-air computa-
tion,” IEEE Transactions on Wireless Communications, vol. 21, no. 7, 2022.
[24] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for wireless data
aggregation in massive IoT,” IEEE Wireless Communications, vol. 28, pp. 57–65,
2021.
[25] L. Qiao and Y. Zhou, “Timely status update for wireless data aggregation via over-
the-air computation,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), 2022.
[26] ETSI, “Overall description of Radio Access Network (RAN) aspects for Vehicle-to-
everything (V2X) based on LTE and NR (3GPP TR 37.985 version 17.1.1 Release
17),” ETSI, Technical Report (TR) 137 985 V17.1.1, Apr. 2022.
36
[27] ETSI, “Universal Mobile Telecommunications System (UMTS); LTE; Proximity-
based services (ProSe); Stage 2 (3GPP TS 23.303 version 17.0.0 Release 17),” ETSI,
Technical Specification (TS) 123 303 V17.0.0, May 2022.
[28] ETSI, “Universal Mobile Telecommunications System (UMTS); LTE; Architecture
enhancements for V2X services (3GPP TS 23.285 version 17.1.0 Release 17),” ETSI,
Technical Specification (TS) 123 285 V17.1.0, Jul. 2022.
[29] B. McCarthy and A. O’Driscoll, Congestion control in the cellular-V2X sidelink,
2021. [Online]. Available: https://arxiv.org/abs/2106.04871.
[30] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Enhancement of 3GPP support for V2X scenarios; Stage 1
(Release 16),” 3GPP, Technical Specification (TS) 22.186 V16.2.0, Release 16, Jun.
2019.
[31] ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of
Applications; Part 2: Specification of Cooperative Awareness Basic Service,” ETSI,
European Standard (EN) 302 637-2 V1.4.1, Apr. 2019.
[32] N. Lyamin, A. Vinel, M. Jonsson, and B. Bellalta, “Cooperative awareness in VANETs:
On ETSI EN 302 637-2 performance,” IEEE Transactions on Vehicular Technology,
vol. 67, pp. 17–28, 2018.
[33] H.-H. Nguyen and H.-Y. Jeong, “Crosslayer beaconing design toward guaranteed
cooperative awareness with contending traffic,” in Proceedings of IEEE Vehicular
Networking Conference (VNC), 2015.
[34] B. Paden, M. ˇCáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” IEEE Transactions
on Intelligent Vehicles, vol. 1, pp. 33–55, 2016.
[35] L.-H. Nguyen, V.-L. Nguyen, and J.-J. Kuo, “Risk-based transmission control for
mitigating network congestion in vehicle-to-everything communications,” IEEE Ac-
cess, vol. 9, pp. 144 469–144 480, 2021.
[36] O. Abari, H. Rahul, and D. Katabi, Over-the-air function computation in sensor net-
works, 2016. [Online]. Available: https://arxiv.org/abs/1612.02307.
[37] O. Abari, H. Rahul, D. Katabi, and M. Pant, “AirShare: Distributed coherent trans-
mission made seamless,” in Proceedings of IEEE Conference on Computer Commu-
nications (INFOCOM), 2015.
[38] M. Goldenbaum and S. Stanczak, “Robust analog function computation via wireless
multiple-access channels,” IEEE Transactions on Communications, vol. 61, pp. 3863–
3877, 2013.
[39] M. Goldenbaum, H. Boche, and S. Sta ́nczak, “Harnessing interference for analog
function computation in wireless sensor networks,” IEEE Transactions on Signal
Processing, vol. 61, pp. 4893–4906, 2013.
[40] E. Ozfatura, S. Rini, and D. Gündüz, “Decentralized sgd with over-the-air computa-
tion,” in Proceedings of IEEE Global Communications Conference (GLOBECOM),
2020, pp. 1–6.
37
[41] G. Bansal, B. Cheng, A. Rostami, K. Sjoberg, J. B. Kenney, and M. Gruteser, “Com-
paring LIMERIC and DCC approaches for VANET channel congestion control,” in
Proceedings of IEEE International Symposium on Wireless Vehicular Communica-
tions (WiVeC), 2014, pp. 1–7.
[42] B. McCarthy and A. O’Driscoll, “OpenCV2X mode 4: A simulation extension for
cellular vehicular communication networks,” in Proceedings of IEEE International
Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), 2019.
[43] P. A. Lopez, M. Behrisch, L. Bieker-Walz, et al., “Microscopic traffic simulation us-
ing SUMO,” in Proceedings of International Conference on Intelligent Transporta-
tion Systems (ITSC), 2018.
[44] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and road
traffic simulation for improved IVC analysis,” IEEE Transactions on Mobile Com-
puting, vol. 10, pp. 3–15, Jan. 2011.
[45] V. Todisco, S. Bartoletti, C. Campolo, A. Molinaro, A. O. Berthet, and A. Bazzi,
“Performance analysis of sidelink 5G-V2X mode 2 through an open-source simula-
tor,” IEEE Access, vol. 9, pp. 145 648–145 661, 2021.
[46] L. Codecá, R. Frank, S. Faye, and T. Engel, “Luxembourg SUMO traffic (LuST)
scenario: Traffic demand evaluation,” IEEE Intelligent Transportation Systems Mag-
azine, vol. 9, pp. 52–63, 2017.