簡易檢索 / 詳目顯示

研究生: 盧昆賢
Lu, Kun-Hsien
論文名稱: 穿臨界二氧化碳低溫熱發電系統參數分析與比較研究
Parametric Analysis and Comparative Study of Transcritical Carbon Dioxide Power Cycle in Low-temperature Heat-to-power Applications
指導教授: 王培仁
Wang, Pei-Jen
口試委員: 蔣小偉
Chiang, Hsiao-Wei
郭啟榮
Guo, Qi-Rong
徐菘蔚
Hsu, Sung-Wei
莊秉勳
Chuang, Pin-Shun
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 85
中文關鍵詞: 低溫熱回收穿臨界二氧化碳循環有機朗肯循環敏感度分析比較研究
外文關鍵詞: low-temperature heat recovery, transcritical CO2 cycle, organic Rankine cycle, sensitivity analysis, comparative study
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球能源需求日益增長以及環保意識的提升,低溫熱發電系統由於可增加能源運用效率和減少化石能源的使用,而成為各國的發展重點。近年來,穿臨界二氧化碳循環於低溫工業廢熱以及地熱的應用逐漸引起各界關注,因其擁有相當優異的能源轉換效率,且與有機朗肯循環相較之下較為環保。然而,文獻指出穿臨界二氧化碳循環系統尚在發展階段並未商業化,在所有主要元件中,轉動元件 (Turbomachinery) 的性能對整體系統表現有最為顯著的影響,且其發展的挑戰性也最高。因此,本研究旨在提供開發者針對穿臨界二氧化碳循環的全面性參數分析,以利縮短其商業化進程。於是,本研究針對轉動元件的性能對穿臨界二氧化碳循環的系統表現進行敏感度分析,主要研究的循環結構為基本型及回熱型 (recuperative) 朗肯 (Rankine) 循環。本研究主要以MatLab®及NIST REFPROP®資料庫做為參數最佳化分析工具,所分析的操作條件涵蓋8 MPa至30 MPa的工作壓力、120oC至180oC的熱源溫度以及65% 至95% 的轉動元件效率。此外,本研究也針對穿臨界二氧化碳循環及有機朗肯循環的輸出功及熱回收效率進行比較,所比較的有機流體為R245fa、R152a、R600a、R1234ze(E)以及R1234yf。研究結果顯示,在穿臨界二氧化碳循環中,膨脹機 (Expander) 比起泵 (Pump) 對系統性能有較顯著的影響。隨著轉動元件效率提升或是熱源溫度增加,系統性能可獲得提升,然而設備成本也會因較高的工作壓力而增加。本研究也利用熱源和工作流體的質量流率比來推估熱交換器的體積和潛在成本,整體來說,熱源溫度增加會使得回熱型穿臨界二氧化碳循環的優勢更為顯著,同時也會降低轉動元件效率對回熱器(Recuperator) 效率的影響。藉由此研究所提供之多種操作條件下的穿臨界二氧化碳循環性能表現,開發者可依據其實際面臨到的操作情況或特定需求而得到一最具經濟效益的設計點。而在與有機朗肯循環的比較研究中,穿臨界二氧化碳循環在低溫環境下不論是在輸出功亦或是熱回收效率上皆有較佳的表現,而在高溫環境中,穿臨界二氧化碳循環有較低的膨脹機出口體積流率,使其與有機朗肯循環相比下具有較小的元件體積和佔地成本,或可彌補其在熱力性能上的不足。


    As global energy demands surges and the environmental awareness rises, the development of low-temperature heat-to-power technologies has become a crucial objective for nations worldwide. These technologies not only increase energy conversion efficiency but also reduce fossil fuel consumptions. In recent years, transcritical carbon dioxide (T-CO2) cycles have drawn attentions in exploiting low-temperature heat sources, including industrial waste heat and geothermal energy. This is attributed to their high energy conversion efficiency and environmental friendliness compared to the organic Rankine cycles (ORCs). However, T-CO2 cycles have yet to be commercialized according to literature. Within the T-CO2 cycles, the turbomachinery efficiencies have been the greatest influence on the overall system performance, and also the biggest developing challenge. This study seeks to shorten the T-CO2 cycle commercialization process by offering a comprehensive parametric analysis. To this end, a sensitivity analysis of T-CO2 cycles regarding the turbomachinery efficiencies is carried out. The Rankine cycles with and without recuperation are investigated. Numerical parametric optimization using MatLab® and NIST REFPROP® is applied to the T-CO2 cycles under various working conditions, including 8 MPa to 30 MPa working pressures, 120oC to 180oC heat source temperatures, and 65% to 95% turbomachinery efficiencies. In addition, a comparative study between the T-CO2 cycle and the ORCs using R245fa, R152a, R600a, R1234ze(E), and R1234yf, has been conducted. The net power output and heat recovery efficiency of both systems are compared under various working temperatures. Results show that, in the T-CO2 cycles, the expander plays a more significant role on improving the system performance compared to the pump. As the system performances increase with increasing turbomachinery efficiencies or heat source temperatures, the equipment costs increase due to the higher optimal working pressure. The mass flowrate ratio of heat source to working fluid has been analyzed for estimating the heat exchanger size and costs in the T-CO2 cycles. In general, as the heat source temperature increases, the advantages of the recuperative T-CO2 cycle are more pronounced, meanwhile, the turbomachinery efficiencies become less influential on the recuperator effectiveness. The comprehensive performance analysis of T-CO2 cycles helps developers to arrive at a more cost-effective design with respect to the actual situation encountered or to the specific preferences. Finally, as compared to the ORCs, T-CO2 cycle is more recommended for lower-temperature environment due to its dominant advantages in both net power output and heat recovery efficiency. For higher working temperatures, the T-CO2 cycle has an advantage in lower volumetric flowrate at the expander outlet over the ORCs, potentially compensating for lower thermodynamic performance through smaller component size and footprint cost.

    摘 要-I ABSTRAC-II 誌 謝-IV CONTENTS-V LIST OF FIGURES-VIII LIST OF TABLES-IX NOMENCLATURE-XI 1.INTRODUCTION-1 1.1 Motivation-1 1.2 Literature review-4 1.2.1 T-CO2 cycles in low-temperature heat-to-power applications-4 1.2.2 Comparisons between T-CO2 cycles and other power cycles-6 1.3 Thesis aims and organization-7 2. TRANSCRITICCAL CO2 CYCLES-11 2.1 Simple cycle-11 2.2 Recuperative cycle-13 3. PROPOSED METHODOLOGY-14 3.1 Energy analysis-14 3.2 Simulation process-16 3.2.1 Sensitivity analysis of T-CO2 cycles-16 3.2.2 Comparative study of T-CO2 cycle and ORCs-20 3.3 Validation-24 3.3.1 Validation of simple T-CO2 cycle model-25 3.3.2 Validation of recuperative T-CO2 cycle model-26 3.3.3 Validation of ORC model-28 4. T-CO2 CYCLES SENSITIVITY ANALYSIS-29 4.1 Standard case of the T-CO2 cycles-29 4.2 Simple T-CO2 cycle-30 4.2.1 Design point setting for the simple T-CO2 cycle-30 4.2.2 Sensitivity analysis of the simple T-CO2 cycle regarding ηp and ηe-32 4.3 Recuperative cycle-37 4.3.1 Design point setting for the recuperative T-CO2 cycle-37 4.3.2 Sensitivity analysis of the recuperative T-CO2 cycle regarding ηp and ηe-38 4.3.3 Sensitivity analysis of recuperator effectiveness regarding ηp and ηe-43 4.4 Surrounding conditions-44 4.4.1 Mass flow rate ratio of heat source to CO2-44 4.4.2 Mass flow rate ratio of heat sink to CO2-45 4.5 Case study based on the sensitivity analysis-46 4.5.1 Scenario 1: if the turbomachinery efficiencies are given-46 4.5.2 Scenario 2: if the target net power output is given-47 4.5.3 Scenario 3: if the expander efficiency has to be enhanced-48 4.6 Summary of the T-CO2 cycles sensitivity analysis-50 5. COMPARISON BETWEEN T-CO2 CYCLE AND ORCS-52 5.1 Design point setting for the ORCs-52 5.2 Comparisons based on the net power output-54 5.3 Comparisons based on the heat recovery efficiency-59 5.4 Economic assessment-65 5.5 Summary of the comparative study of T-CO2 cycle and ORCs-66 6. CONCLUSIONS-68 REFERENCES-70 APPENDIX-77 A.1 Validation results of the T-CO2 cycles-77 A.2 Simulation results of the T-CO2 cycles at the standard case setting-79 A.3 T-CO2 cycle vs ORCs-81 A.3.1 T-CO2 cycle vs R245fa-ORC-81 A.3.2 T-CO2 cycle vs R152-ORC-82 A.3.3 T-CO2 cycle vs R600a-ORC-83 A.3.4 T-CO2 cycle vs R1234ze(E)-ORC-84 A.3.5 T-CO2 cycle vs R1234yf-ORC-85

    Adams, B. M., Kuehn, T. H., Bielicki, J. M., Randolph, J. B., & Saar, M. O. (2015). A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions. Applied Energy, 140, 365-377.

    Amini, A., Mirkhani, N., Pourfard, P. P., Ashjaee, M., & Khodkar, M. A. (2015). Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle. Energy, 86, 74-84.

    Astolfi, M., Lasala, S., & Macchi, E. (2017). Selection Maps For ORC And CO2 Systems For Low-Medium Temperature Heat Sources. Energy Procedia, 129, 971-978.

    Autier, E., & Kouadri, A. (2009). Optimum for CO2 transcritical power Rankine cycle using exhaust gas from fishing boat diesel engines. IFAC Proceedings Volumes, 42(26), 132-139.

    Baik, Y.-J., Kim, M., Chang, K. C., & Kim, S. J. (2011). Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source. Applied Energy, 88(3), 892-898.

    Bellos, E., & Tzivanidis, C. (2021). Investigation of a Novel CO2 Transcritical Organic Rankine Cycle Driven by Parabolic Trough Solar Collectors. Applied System Innovation, 4(3), 53.

    Calm, J. M., & Hourahan, G. C. (2011). Physical, safety, and environmental data for current and alternative refrigerants. Paper presented at the Proceedings of 23rd international congress of refrigeration (ICR2011), Prague, Czech Republic.

    Campana, F., Bianchi, M., Branchini, L., De Pascale, A., Peretto, A., Baresi, M., . . . Vescovo, R. (2013). ORC waste heat recovery in European energy intensive industries: Energy and GHG savings. Energy Conversion Management, 76, 244-252.

    Cayer, E., Galanis, N., Desilets, M., Nesreddine, H., & Roy, P. (2009). Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Applied Energy, 86(7-8), 1055-1063.

    Cayer, E., Galanis, N., & Nesreddine, H. (2010). Parametric study and optimization of a transcritical power cycle using a low temperature source. Applied Energy, 87(4), 1349-1357.

    Chen, H., Goswami, D. Y., Rahman, M. M., & Stefanakos, E. K. (2011). A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power. Energy, 36(1), 549-555.

    Chen, Y., Lundqvist, P., Johansson, A., & Platell, P. (2006). A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Applied thermal engineering, 26(17-18), 2142-2147.

    Chen, Y., Lundqvist, P., & Platell, P. (2005). Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption. Applied thermal engineering, 25(14-15), 2041-2053.

    Dai, Y., Wang, J., & Gao, L. (2009). Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion Management, 50(3), 576-582.

    Du, Y., Tian, G., & Pekris, M. (2022). A comprehensive review of micro-scale expanders for carbon dioxide related power and refrigeration cycles. Applied thermal engineering, 201, 117722.

    Evans, A., Strezov, V., & Evans, T. J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13(5), 1082-1088.

    Feidt, M., Kheiri, A., & Pelloux-Prayer, S. (2014). Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids. Energy, 67, 513-526.

    Geng, C., Lu, X., Yu, H., Zhang, W., Zhang, J., & Wang, J. (2022). Theoretical Study of a Novel Power Cycle for Enhanced Geothermal Systems. Processes, 10(3), 516.

    Guo, J.-Q., Li, M.-J., He, Y.-L., Jiang, T., Ma, T., Xu, J.-L., & Cao, F. (2022). A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Conversion Management, 115437.

    Habibollahzade, A., Petersen, K., Aliahmadi, M., Fakhari, I., & Brinkerhoff, J. (2022). Comparative thermoeconomic analysis of geothermal energy recovery via super/transcritical CO2 and subcritical organic Rankine cycles. Energy Conversion Management, 251, 115008.

    Hettiarachchi, H. M., Golubovic, M., Worek, W. M., & Ikegami, Y. (2007). Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources. Energy, 32(9), 1698-1706.

    Hsu, S.-W., Chiang, H.-W. D., & Yen, C.-W. (2014). Experimental investigation of the performance of a hermetic screw-expander organic Rankine cycle. Energies, 7(9), 6172-6185.

    Hu, D., Li, S., Zheng, Y., Wang, J., & Dai, Y. (2015). Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources. Energy Conversion Management, 96, 175-187.

    Inayat, A. (2023). Current progress of process integration for waste heat recovery in steel and iron industries. Fuel, 338, 127237.

    Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science Engineering Progress, 6, 268-289.

    Kim, Y.-M., Lee, Y.-D., & Ahn, K.-Y. (2021). Parametric Study of a Supercritical CO2 Power Cycle for Waste Heat Recovery with Variation in Cold Temperature and Heat Source Temperature. Energies, 14(20), 6648.

    Kim, Y., Kim, C., & Favrat, D. (2012). Transcritical or supercritical CO2 cycles using both low-and high-temperature heat sources. Energy, 43(1), 402-415.

    Kim, Y. M., Sohn, J. L., & Yoon, E. S. (2017). Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine. Energy, 118, 893-905.

    Kong, R., Deethayat, T., Asanakham, A., Vorayos, N., & Kiatsiriroat, T. (2019). Thermodynamic performance analysis of a R245fa organic Rankine cycle (ORC) with different kinds of heat sources at evaporator. Case Studies in Thermal Engineering, 13, 100385.

    Lecompte, S., Ntavou, E., Tchanche, B., Kosmadakis, G., Pillai, A., Manolakos, D., & De Paepe, M. (2019). Review of experimental research on supercritical and transcritical thermodynamic cycles designed for heat recovery application. Applied sciences, 9(12), 2571.

    Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST standard reference database 23. Reference fluid thermodynamic transport properties, version 9.

    Li, L., Ge, Y., Luo, X., & Tassou, S. (2016). Thermodynamic analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low grade heat to power energy conversion. Applied thermal engineering, 106, 1290-1299.

    Li, M., Wang, J., Li, S., Wang, X., He, W., & Dai, Y. (2014). Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle. Geothermics, 50, 101-111.

    Liu, B.-T., Chien, K.-H., & Wang, C.-C. (2004). Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 29(8), 1207-1217.

    Liu, L., Yang, Q., & Cui, G. (2020). Supercritical carbon dioxide (s-CO2) power cycle for waste heat recovery: a review from thermodynamic perspective. Processes, 8(11), 1461.

    Mirkhani, N., Amini, A., & Ashjaee, M. (2017). Thermo-economic analysis of transcritical CO2 cycles with bounded and unbounded reheats in low-temperature heat recovery applications. Energy, 133, 676-690.

    Montes, M. J., Linares, J. I., Barbero, R., & Rovira, A. (2020). Proposal of a new design of source heat exchanger for the technical feasibility of solar thermal plants coupled to supercritical power cycles. Solar Energy, 211, 1027-1041.

    Morrone, P., & Algieri, A. (2020). Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation. Applied sciences, 10(19), 6639.

    Moya, D., Aldás, C., & Kaparaju, P. (2018). Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews, 94, 889-901.

    Novales, D., Erkoreka, A., De la Peña, V., & Herrazti, B. (2019). Sensitivity analysis of supercritical CO2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power. Energy Conversion Management, 182, 430-450.

    Öhman, H., & Lundqvist, P. (2015). Screw expanders in ORC applications, review and a new perspective. Paper presented at the 3rd International Seminar on ORC Power Systems, October 12-14, 2015, Brussels, Belgium.

    Pan, M., Chen, X., & Li, X. (2022). Multi-objective analysis and optimization of cascade supercritical CO2 cycle and organic Rankine cycle systems for waste-to-energy power plant. Applied thermal engineering, 214, 118882.

    Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U., & Micale, G. (2018). Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Applied thermal engineering, 138, 207-216.

    Peris, B., Navarro-Esbrí, J., Molés, F., & Mota-Babiloni, A. (2015). Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy, 85, 534-542.

    Rajabloo, T., Bonalumi, D., & Iora, P. (2017). Effect of a partial thermal decomposition of the working fluid on the performances of ORC power plants. Energy, 133, 1013-1026.

    Ren, L., Liu, J., & Wang, H. (2020). Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint. Energies, 13(13), 3388.

    Safarian, S., & Aramoun, F. (2015). Energy and exergy assessments of modified Organic Rankine Cycles (ORCs). Energy reports, 1, 1-7.

    Salah, S. I., Khader, M. A., White, M. T., & Sayma, A. I. (2020). Mean-line design of a supercritical CO2 micro axial turbine. Applied sciences, 10(15), 5069.

    Sarkar, J. (2015). Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion. Renewable Sustainable Energy Reviews, 48, 434-451.

    Shan, A. N. U., Mostafa, M. Z., Hossain, A., Sakib, M. S., & Ehsan, M. M. (2022). Thermal assessment and optimization of process fluids in transcritical organic and transcritical CO2 Rankine cycle for waste energy recuperating system. Energy Conversion Management: X, 15, 100258.

    Song, J., Loo, P., Teo, J., & Markides, C. N. (2020). Thermo-economic optimization of organic Rankine cycle (ORC) systems for geothermal power generation: A comparative study of system configurations. Frontiers in Energy Research, 8, 6.

    Tagliaferri, M., Gładysz, P., Ungar, P., Strojny, M., Talluri, L., Fiaschi, D., . . . Sowiżdżał, A. (2022). Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems. Sustainability, 14(24), 16580.

    Tartière, T., & Astolfi, M. (2017). A world overview of the organic Rankine cycle market. Energy Procedia, 129, 2-9.

    Tuo, H. (2013). Thermal‐economic analysis of a transcritical Rankine power cycle with reheat enhancement for a low‐grade heat source. International Journal of Energy Research, 37(8), 857-867.

    Unglaube, T., & Chiang, H.-W. D. (2020). Preliminary design of small-scale supercritical CO2 radial inflow turbines. Journal of Engineering for Gas Turbines, 142(2), 021011.

    Vélez, F., Chejne, F., Antolin, G., & Quijano, A. (2012). Theoretical analysis of a transcritical power cycle for power generation from waste energy at low temperature heat source. Energy Conversion Management, 60, 188-195.

    Van Erdeweghe, S., Van Bael, J., Laenen, B., & D’haeseleer, W. (2019). Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles. Applied Energy, 242, 716-731.

    Wang, E., Peng, N., & Zhang, M. (2021). System design and application of supercritical and transcritical CO2 power cycles: A review. Frontiers in Energy Research, 9, 723875.

    Wang, J., Sun, Z., Dai, Y., & Ma, S. (2010). Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network. Applied Energy, 87(4), 1317-1324.

    White, M. T., Bianchi, G., Chai, L., Tassou, S. A., & Sayma, A. I. (2021). Review of supercritical CO2 technologies and systems for power generation. Applied thermal engineering, 185, 116447.

    Wolf, V., Bertrand, A., & Leyer, S. (2022). Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery. Energy reports, 8, 4196-4208.

    Xu, Z., Wang, R., & Yang, C. (2019). Perspectives for low-temperature waste heat recovery. Energy, 176, 1037-1043.

    Yamaguchi, H., Zhang, X., Fujima, K., Enomoto, M., & Sawada, N. (2006). Solar energy powered Rankine cycle using supercritical CO2. Applied thermal engineering, 26(17-18), 2345-2354.

    Yamaguchi, T., Sasaki, S., & Momoki, S. (2019). Experimental study for the small capacity organic Rankine cycle to recover the geothermal energy in Obama hot spring resort area. Energy Procedia, 160, 389-395.

    Yoon, S. Y., Kim, M. J., Kim, I. S., & Kim, T. S. (2017). Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO2 cycle focusing on off-design performance. Energy Procedia, 129, 987-994.

    Zare, V. (2015). A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management, 105, 127-138.

    Zhang, X., Cao, M., Yang, X., Guo, H., & Wang, J. (2019). Economic analysis of organic Rankine cycle using R123 and R245fa as working fluids and a demonstration project report. Applied sciences, 9(2), 288.

    Zhang, X., Yamaguchi, H., & Uneno, D. (2007). Thermodynamic analysis of the CO2‐based Rankine cycle powered by solar energy. International Journal of Energy Research, 31(14), 1414-1424.

    Zhar, R., Allouhi, A., Jamil, A., & Lahrech, K. (2021). A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery. Case Studies in Thermal Engineering, 28, 101608.

    QR CODE