簡易檢索 / 詳目顯示

研究生: 裘元杰
論文名稱: 新型不對稱銅金屬錯合物的合成及其在化學氣相沉積上之應用
指導教授: 季昀
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 84
中文關鍵詞: 銅化學氣相沉積
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們分別利用胺醇類配位基及六氟戊二酮兩種配基之鈉鹽與氯化銅進行反應,可得到一系列不對稱銅二價金屬錯合物1~7,這些化合物具有良好的空氣穩定性和揮發性,其熱物理性質皆詳述於論文中。經由錯合物2的X-ray單晶繞射鑑定,推測這系列的錯合物皆以雙聚物形式存在。
      我們選取錯合物5和6作為化學氣相沉積前驅物,以直立冷壁式反應器在矽基板上沉積銅金屬薄膜,於實驗過程中,可觀察到錯合物5與6不論是在氫氣或氬氣的環境下,皆可得到高純度的銅金屬薄膜。所有鍍製出來的銅金屬薄膜皆由掃描式電子顯微鏡、四點探針及ESCA進行分析與鑑定,並在文中探討影響薄膜純度、表面形貌與電性表現的原因。


    Abstract
    A series of copper (II) complexes with good volatility have been synthesized successfully by reactions of copper (II) chloride and the sodium salt of hexafluroacetylacetonate and various kind of amino-alcohols. These complexes are proved to be air stable and their thermal behaviors were investigated by TGA and discussed in detail. The single-crystal X-ray diffraction studies of 2 indicated that this series of complexes exist in dimeric form.

    CVD experiments of 5 and 6 were conducted with a vertical cold-wall reactor. High purity copper metal thin films could be deposited under argon as well as hydrogen atmosphere. All of the films were characterized by SEM, XRD, ESCA and four-point probe technique, and the causes to influence the properties of the films such as resistivity, surface morphology and composition were fully discussed.

    【目錄】 第一章、序論 1 第一節、前言 1 第二節、化學氣相沉積簡介 4 第三節、研究背景與動機 7 第二章、實驗部份 11 第一節、一般敘述與討論 11 (一)藥品 11 (二)直立冷壁式化學氣相沉積裝置 11 (三)分析工具 14 第二節、實驗步驟 19 (一)不對稱銅二價金屬錯合物的合成 19 (二)化學氣相沉積 33 第三章、結果與討論 35 第一節、銅金屬錯合物之結構解析與性質探討 35 (一)錯合物 2 之構造解析 35 (二)錯合物之物理與化學性質探討 41 第二節、銅金屬薄膜微結構與物理性質的探討 52 (一)錯合物5化學氣相沉積之討論 56 (二)錯合物6化學氣相沉積之討論 65 第四章、結論 81 第五章、參考文獻 82

    1. S. P. Murarka, Solid State technology, 1996, 83.
    2. S. P. Murarka, R. J. Gutmann, A. E. Kaloyerors and W. A. Lanford, Thin Solid Films, 1993, 236, 257.
    3. C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL 1996, 663.
    4. H. Ono, T. Nakano, T. Ohta, Appl. Phys. Lett., 1994, 64, 1511.
    5. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A. Nicolet, J. Appl. Phys., 1991, 70, 1369.
    6. P. Doppelt, Microelectron. Eng., 1997, 37/38, 89.
    7. P. Motte, J. Torres, J. Palleau, F. Tardif, O. Demolliens and H. Bernard, Microelectron. Eng., 2000, 50, 487.
    8. C. Steinbrüchel, Appl. Surf. Sci., 1995, 91, 139.
    9. Z. Stavreva, D. Zeidler, M. PlÖtner and K. Drescher, Appl. Surf. Sci., 1995, 91, 192.
    10. P. Doppelt, M. Stelzle, Microelectron. Eng., 1997, 33, 15.
    11. K. Weiss, S. Riedel, S. E. Schulz, M. Schwerd, H. Helneder, H. Wendt and T. Gessner, Microelectron. Eng., 2000, 50, 433.
    12. S. T. Hwang, I. Shim, K. O. Lee, K. S. Kim, J. H. Kim, G. J. Choi, Y. S. Cho and H. Choi, J. Mater. Res., 1996, 11, 1051.
    13. D. Temple, A. Reisman, J. Electrochem. Soc., 1989, 136, 3525.
    14. A. E. Kaloyeros, A. Feng, J. Garhart, K. C. Brooks, S. K. Ghosh, A. N. Saxena and F. Luehers, J. Electronic Maters., 1990, 19, 271.
    15. N. Awaya, Y. Arita, Jpn. J. Appl. Phys., 1993, 32, 3915.
    16. B. Lecohier, B. Calpini, J. M. Philippoz, T. Stumm and H. Van den Bergh, Appl. Phys. Lett., 1992, 60, 3114.
    17. H. S. Horowitz, S. J. McLain, A. W. Sleight, J. D. Druliner, P. L. Gai, M. J. VanKavelaar, J. L. Wahgner. B. D. Biggs and S. J. Poon, Science., 1989, 243, 66.
    18. S. C. Goel, K. S. Kramer, M. Y. Chiang and W. E. Buhro, Polyhedron, 1990, 9, 611.
    19. V. L. Young, D. F. Cox and M. E. Davis, Chem. Mater., 1993, 5, 1701.
    20. J. Pinkas, J.C. Huffmann, M. H. Chisholm and K. G. Caulton, Inorg. Chem., 1995, 34, 5314.
    21. J. Pinkas, J. C. Huffman, J. C. Bollinger, W. E. Streib, D. V. Baxter, M. H. Chisholm and K. G. Caulton, Inorg. Chem., 1997, 36, 2930.
    22. a)P. –F. Hsu, Y. Chi, T. –W. Lin, Chem. Vap. Deposit., 2001, 7, 28.b)Y. Chi, P. -F. Hsu, C. -S. Liu, W. -L. Ching, T. -Y. Chou, A. J. Carty, S. -M. Peng, G. -H. Lee and S. -H. Chuang, J. Mater. Chem., 2002, 12, 3541.
    23. T. Foster, P. R. West, Can. J. Chem., 1973, 51, 4009.
    24. K. Woo, H. Paek, W. I. Lee, Inorg. Chem., 2003, 42, 6484.
    25. R. Becker, A. Devi, J. Weiβ, U. Weckenmann, M. Winter, C. Kiener, H. –W. Becker and R. A. Fisher, Chem. Vap. Deposit., 2003, 9, 149.
    26. 郭慧通, 國立清華大學化學所碩士論文, 2003.
    27. W.–J. Lee, J. S. Min, S.–K. Rha, S.–S. Chun, C.–O. Park, J. Mater. Sci., 1996, 7, 111.
    28. (a) D.-H. Kim, R. H. Wentorf and W. N. Gill, Mat. Res. Soc. Symp. Proc., 1992, 260, 107. (b) D.-H. Kim, R. H. Wentorf and W. N. Gill, J. Electrochem. Soc., 1993, 140, 3273.
    29. C. Marcadal. E. Richard, J. Torres, J. Palleau and R. Madar, Microelectron. Eng., 1997, 37/38, 97.

    30. D. Bollmann, R. Merkel and A. Klumpp, Microelectron. Eng., 1997, 37/38, 105.

    31. S. Vaidya, D. B. Fraser, A. K. Sinhar, Proceedings of IRPS, IEEE, 1980, 165.
    32. J. Li, Y. Shacham-Diamand, J. Electrochem. Soc., 1992, 139, L37.
    33. (a)N. –I. Cho, D. I. Park, Thin Solid Films, 1997, 465, 308-309. (b)K. K. Choi, S. W. Rhee, J. Electrochem. Soc., 2001, 148, C473.
    34. M. B. Naik, W. N. Gill, R. H. Wentorf and R. R. Reeves, Thin Solid Films, 1995, 262, 60.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE