簡易檢索 / 詳目顯示

研究生: 蘇如意
Su, Ru-Yi
論文名稱: 多維電場對橫向式擴散金氧半場效電晶體特性之影響
Design of LDMOSFET with Multiple Dimensional Electric Field
指導教授: 黃智方
Huang, Chih-Fang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 139
中文關鍵詞: 横向式擴散金氧半場效電晶體
外文關鍵詞: LDMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的進步,許多新型元件結構的誕生,對於元件的特性如導通電阻,崩潰電壓和元件可靠度的需求也日益增加。在本論文中我們提出了三種不同結構的整合型金氧半場效電晶體對高功率電晶體的元件特性與熱載子退化效應作一番完整的探討。
    由於二氧化矽(SiO2)有比較低介電常數和較高崩潰電場的特性,因此,我們提出一個新型的結構,利用介電材料(SiO2)來調變汲極延伸型金氧半電晶體的漂移區電場以增加崩潰電壓。利用先進技術的互補式金氧半電晶體(CMOS)製程,藉由更改淺層溝渠隔離技術(STI)的光罩佈局,我們成功的設計出在20V崩潰電壓的應用範圍下,擁有較低的導通電阻(RON, SP)。從實際的量測數據顯示,元件的崩潰電壓可以隨著漂移區裡的介電質大小來調整。也就是說,可以提供類比IC元件設計者擁有多重電壓的選擇性。
    為了提昇元件的耐壓能力,傳統的方法是在漂移區置入STI,可以有效疏解閘極邊緣的高電場來增加崩潰電壓。然而,導通電阻是高壓元件用於Switch電路時效能的重要參數。在希望可以降低高功率電晶體的導通損耗(conduction loss)情況下,因此我們所設計的元件須具有低的導通電阻。對於0.25μm N通道的橫向擴散金屬氧化場效電晶體 (LDMOSFET),在不影響元件的崩潰電壓與製程步驟的條件下,藉由更改淺層溝渠隔離技術(STI)的光罩佈局,我們提出一個可以成功地降低導通電阻20%的方法:將Z方向的STI設計成柵欄式的架構,同時搭配CMOS製程中的LDD(Lightly Doped Drain)摻雜,可以縮短電流的導通路徑來獲得較低的導通電阻和較高的驅動電流。
    研究顯示,浮接式導體(floating field conductors)可以有效改善元件的特性。因此我們利用在汲極延伸型金氧半場效電晶體漂移區研究浮接式多晶矽的效應。由實驗結果與二維製程及電性模擬分析,我們探討浮接式多晶矽金氧半場效電晶體(FPS-LDMOS)的元件特性與可靠度分析。另一方面,為了避免Kirk effect發生在高的閘極偏壓下導致加速元件的退化。我們發現適當的設計浮接式多晶矽的大小與位置,可以有效的控制元件的基體電流。同時也發現傳統的第一個基體電流的峰值,可以當作是熱載子退化效應的指標。
    最後,我們針對0.25μm P型橫向擴散金屬氧化物電晶體(P-LDMOS),分析元件的熱載子可靠度問題。我們探討在熱載子測試中,P-LDMOS的線性區電流(IDLIN)的退化行為。發現經過熱載子測試後第一瞬間(不大於50ms)的線性區電流(IDLIN)會異常增加,接著之後,電流幾乎沒有退化或改變的行為。藉由二維的電性模擬,我們證實是因為熱電子注入STI邊緣,造成第一瞬間異常的線性區電流增加。實驗結果發現,線性區電流的增加量是與最大撞擊游離化產生速率(Max. IIGR)的區域到熱電子注入STI邊緣的距離是成正比關係。然而,針對元件退化會回復(Recovery)的特性,經過高溫、高壓環境測試,我們發現注入的熱電子是非常穩定的。


    Abstract Contents Figure Captions Table Lists Chapter 1 Introduction Chapter 2 Theory Review 2.1 Process Integration of High Voltage Device 2.2 Breakdown Mechanism and Device Characteristics 2.3 Other Methods for Optimum RON, SP vs. BV 2.4 Hot Carrier Reliability Mechanism Chapter 3 LDMOSFET with Dielectric Modulated Drift Region 3.1 Introduction 3.2 Dielectric Modulation 3.3 Experiment 3.4 Results and Discussion 3.5 Conclusions Chapter 4 Experiment Results of On-State Resistance Reduction by Fingered STI in 0.25-Micron LDMOSFET 4.1 Introduction 4.2 Device Descript 4.3 Design Structural Parameter 4.4 Experiment Results and Discussion 4.5 Conclusion Chapter 5 The Effect of Floating Poly-Silicon on the LDMOSFET with 65nm CMOS Technology 5.1 Motivation 5.2 Device Description 5.3 Potential Coupling Effect 5.4 Device Characteristics 5.5 Hot Carrier Behavior 5.6 Conclusion Chapter 6 Investigation on the Initial Hot-Carrier Injection in P-LDMOS Transistors with Shallow Trench Isolation Structure 6.1 Introduction 6.2 Device Description and experiment 6.3 Results and Discussion 6.4 Conclusion Chapter 7 Conclusion References Publication List and Patent List

    [1] Alcatel Mietec I2T Design and layout Manual 1997.
    [2] Hussein Ballan and Michel Declercq, “High Voltage Devices and Circuits in Standard CMOS Technologies,” Swiss Federal Institute of Technology, Lausanne.
    [3] K.M. Wu,” Development and Hot-Carrier Reliability Study of Integrated High-Voltage MOSFET Transistors,” Ph.D. Dissertation. 2007.
    [4] Adriaan W. Ludikhuize, “A Review of RESURF Technology,” in Proc. ISPSD, 2000, pp.11-18.
    [5] Donald A. Neamen, Semiconductor Physics & Devices, Second Edition, Copyright 1997.
    [6] Auton Kruger, Zener and Avalanche Diodes.
    [7] B. Van. Zeghbroeck, Reverse Bias Breakdown of The Excellent Web Text Principles of Semiconductor Devices, Colorado.
    [8] Sze, S.M, Semiconductor Devices Physics and Technology, Copyright 1997 by John Wiley & Sons Inc.
    [9] B. JAYANT BALIGA, Power Semiconductor Devices, North Carolina State University.
    [10] Vrej Barkhordarian, Power MOSFET Basics, International Rectifier, EI Segundo, Ca.
    [11] J.A. Appels, H.M.J. Vaes, “High Voltage Thin Layer Devices (Resurf Devices),” in Proc. IEDM, 1979, pp.238-241.
    [12] Hossain, Z. Imam, M. Fulton, J. Tanaka M,. “Double-resurf 700V N-channel LDMOSFET with Best-in-class On-resistance”, IEEE Transactions on Electron Devices, vol. 50, pp. 789-795, 2003.
    [13] N. Fujishima, M. Saito, A. Kitamura, Y. Urano, G. Tada and Y. Tsuruta, “ A 700V Lateral Power MOSFET with Narrow Gap Double Metal Field Plates Realizing Low On-resistance and Long-term Stability of Performance,” in Proc. ISPSD, 2001, pp.255-258.
    [14] L. Lorenz et al., COOLMOSTM-a new milestone in high voltage Power MOS.
    [15] N. Cezac et al, ” A New Generation of Power Unipolar Devices: the Concept of the Floating Islands MOS Transistor (FLIMOST),” in Proc. ISPSD, 2000, pp.69-72.
    [16] J. Gong et al., Dielectric Material Modulated High Voltage Devices, Patent.
    [17] Hitachi Semiconductor Reliability Handbook, Renesas Technology.
    [18] Y. S. Huang and B. J. Baliga, “Extension of RESURF principle to dielectrically isolated power devices,” in Proc. ISPSD, 1991, pp. 27-30.
    [19] S. Merchant, E. Arnold, H. Baumgart, R. Egloff, T. Letavic, S. Mukherjee, and H. Pein, “Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors,” in Proc. ISPSD, 1993, pp. 124-128.
    [20] S.K. Chung, S.Y. Han, J.C. Shin, Y.I. Choi and S.B. Kim, “An Analytical Model for Minimum Drift Region Length of SOI RESURF Diodes,” IEEE Electron Device Letters, VOL. 17, NO. 1, JANUARY 1996.
    [21] S.K. Chung and S.Y. Han, “Analytical Model for the Surface Field Distribution of SOI RESURF Devices,” IEEE Electron Device Letters, VOL. 45, NO. 6, JUNE 1998.
    [22] S.K. Chung and D.K. Shin, “An Analytical Model for Interaction of SIPOS Layer with Underlying Silicon of SOI RESURF Devices,” IEEE Transactions on Electron Devices, VOL. 46, NO. 8, AUGUST 1999.
    [23] Steve Merchant, “Analytical Model for the Electric Field Distribution in SOI RESURF and TMBS Structures,” IEEE Transactions on Electron Devices, VOL. 46, NO. 6, JUNE 1999.
    [24] S.K. Chung, “An Analytical Model for Breakdown Voltage of Surface Implanted SOI RESURF LDMOS,” IEEE Transactions on Electron Devices, VOL. 47, NO. 5, MAY 2000.
    [25] Hao Wang, H.P. Edward Xu, Wai Tung Ng, Kenji Fukumoto, Ken Abe, Akira Ishikawa, Hisaya Imai, Kimio Sakai, Kaoru Takasuka, “A 30V EDMOS with Orthogonal Gate Structure Based on a 0.18um CMOS Technology,” in Proc. ISPSD, 2000, pp.20-23.
    [26] Adriaan W. Ludikhuize, “A Review of RESURF Technology,” in Proc. ISPSD, 2000, pp.11-18.
    [27] L. Lorenz, G. deboy, A. Knapp and M. Marz, “COOLMOSTM-a new milestone in high voltage Power MOS,” in Proc. ISPSD, 1998, pp.3-10.
    [28] N. Cezac et al, ” A New Generation of Power Unipolar Devices: the Concept of the Floating Islands MOS Transistor (FLIMOST),” in Proc. ISPSD, 2000, pp.69-72.
    [29] W. Saito et al, “ Ultra Low On-Resistance SBD with P-Buried Floating Layer,” in Proc. ISPSD, 2002, pp.33-36.
    [30] W. Saito et al, “ A Novel Low On-Resistance Schottky-Barrier Diode With p-Buried Floating Layer Structure,” IEEE Transactions on Electron Devices, VOL. 51, NO. 5, MAY 2004.
    [31] J. Nishio, et al, “ Ultralow-Loss SiC Floating Junction Schottky Barrier Diodes (Super-SBDs),” IEEE Transactions on Electron Devices, VOL. 55, NO. 8, AUGUST 2008.
    [32] D. Riccardi et al., “BCD8 from 7V to 70V: a new 0.18um technology platform to address the evolution of applications towards smart power ICs with high logic contents,” in Proc. of ISPSD, 2007, pp. 73-76.
    [33] T. Uhlig et at., “A18-a novel 0.18um smart power SOC IC technology for automotive applications,” in Proc. of ISPSD, 2007, pp. 237-240.
    [34] Sameer Pendharkar et al., “7 to 30V state-of-art power device implementation in 0.25um LBC7 BiCMOS-DMOS process technology,” in Proc. of ISPSD, 2004, pp. 419-422.
    [35] A. Moscatelli et al., “LDMOS implementation in a 0.35um BCD technology (BCD6),” in Proc. of ISPSD, 2000, pp. 323-326.
    [36] V. Parthasarathy et al., “A 0.25um CMOS based 70V smart power technology with deep trench for high-voltage isolation,” in Proc. of IEDM, 2002, pp. 459-462.
    [37] R. Ramanathan et al., “Competitive 5V-Thin and 12V-Thick Dual Gate Technology Isolated Drain LDMOS Devices,” in Proc. of ISPSD, 2003, pp.257-260.
    [38] Il-Yong Park et al., “BD180-a new 0.18um BCD (Bipolar-CMOS-DMOS) Technology from 7V to 60V,” in Proc. of ISPSD, 2008, pp. 64-67.
    [39] A.W. Ludikhuize, “A Review of RESURF Technology,” in Proc .of ISPSD, 2000, pp.11-18.
    [40] D.R. Disney et al., “A new 800V lateral MOSFET with dual conduction paths,” in Proc. of ISPSD, 2001, pp.399-402.
    [41] F. Conti et al., “Surface breakdown in silicon planar diodes equipped with field plate,” Solid St.El, pp.93-105, 1972.
    [42] G.E.J. Koops et al., “RESURF stepped oxide (RSO) MOSFET for 85V having a record-low specific on-resistance,” in Proc. of ISPSD, 2004, pp.185-188.
    [43] J. Sonsky and A. Heringa, “Dielectric Resurf: Breakdown voltage control by STI layout in standard CMOS,” in Proc. IEDM, 2005, pp. 385-388.
    [44] J.A. Appels, H.M.J. Vaes, “High Voltage Thin Layer Devices (Resurf Devices),” in Proc. of IEDM, 1979, pp.238-241.
    [45] P. Goarin, G.E.J. Koops, R. van Dalen, C. Le cam and J. Saby, “ Split-gate Resurf Stepped oxide (RSO) MOSFETs for 25V applications with record low gate-to-drain charge,” in Proc. of ISPSD, 2007, pp.61-64.
    [46] H. Wang, H.P. Edward Xu, W.T. Ng, K. Fukumoto, K. Abe, A. Ishikawa, H. Imai, K. Sakai and K. Takasuka, “A 30 EDMOS with Orthogonal Gate Structure Based on a 0.18um CMOS Technology,” in Proc. of ISPSD, 2008, pp.20-23.
    [47] R. Sunkavalli et al., “Step drift doping profile for high voltage DI lateral power devices,” in Proc. of International SOI Conference, 1995, pp. 139-140.
    [48] P. Wessels, M. Swanenberg, J. Claes, E.R. Ooms, “Advanced 100V, 0.13 μm BCD process for next generation automotive applications,” in Proc. of ISPSD, 2006, pp.197-200.
    [49] C. Contiero, B. Murari, B. Vigna, “Progress in Power ICs and MEMS, “Analog Technologies to interface the Real World,” in Proc. of ISPSD, 2004, pp. 3-12.
    [50] J. Sonsky and A. Heringa, “Ultra-flexible, layout-enabled field plates for HV transistor integration in SOI-based CMOS,” in Proc. of ISPSD, 2007, pp. 77-80.
    [51] A. W. Ludikhuize, “A Review of RESURF Technology,” in Proc. of ISPSD, 2000, pp. 11-18.
    [52] V. Parthasarathy, M.J. Zunino, W.R. Peterson, Shang-Hui Tu, “Method of Fabricating a Semiconductor Device Having a Floating Field Conductor,” United States Patent, 2000.
    [53] D.R. Disney, A.K. Paul, M. Darwish, R. Basecki, V. Rumernnik, “A new 800V lateral MOSFET with dual conduction paths,” in Proc. of ISPSD, 2001, pp. 399-402.
    [54] J. Sonsky and A. Heringa, “Dielectric RESURF: Breakdown Voltage Control by STI Layout in Standard CMOS,” in Proc. of IEDM, December 2005.
    [55] A. Heringa and J. Sonsky, “Novel power transistors design for a process independent high voltage option in standard CMOS,” in Proc. of ISPSD, 2006, pp. 361-364.
    [56] A. Heringa, J. Sonsky, P.Y. Chaing and R.Y. Su “Innovative lateral field plates by gate fingers on STI regions in deep submicron CMOS,” in Proc. of ISPSD, 2008, pp. 271-274.
    [57] R. Izawa, E. Takeda, ”The Impact of N- Drain Length and Gate-drain/source overlap on submicron LDD devices for VLSI,” IEEE Transactions on Electron Devices, NO. 10, pp. 480-482 1987.
    [58] R. Izawa, E. Takeda, ”Impact of the Gate-Drain Overlapped Device (GOLD) for Deep Submicrometer VLSI,” IEEE Transactions on Electron Devices, vol. 35, NO. 12, pp. 2088-2092, 1988.
    [59] N. Fujishima, M. Saito, A. Kitamura, Y. Urano, G. Tada and Y. Tsuruta,”A 700V Lateral Power MOSFET with Narrow Gap Double Metal Field Plates Realizing Low on-resistance and Long-term Stability of Performance,” in Proc. of ISPSD, 2001, pp. 255-258.
    [60] A. Shibib, S. Xu, Z. Xie, Peter Gammel, M. Mastrapasqua, I. Kizilyalli, “Control of Hot Carrier Degradation in LDMOS Devices by a Dummy Gate Field Plate: Experimental Demonstration,” in Proc. of ISPSD, 2004, pp. 233-235.
    [61] M.N. Marbell, S.V. Cherepko, James C.M. Hwang, M. Ayman Shibib, W.R. Curtice, “Modeling and Characterization of Effects of Dummy-Gate Bias on LDMOSFETs,” IEEE Transactions on Electron Devices, VOL. 54, NO. 3, MARCH 2007.
    [62] M.N. Marbell, S.V. Cherepko, James C.M. Hwang, M. Ayman Shibib, W.R. Curtice, “Effects of Dummy Gate on Breakdown and Degradation of LDMOSFETs,” IEEE Transactions on Device and Materials Reliability, VOL. 8, NO. 1, MARCH 2008.
    [63] Vicky O’Donovan, Anne Deignan, Keith Moloney, Paul Daly, Denis Doyle and James Molyneaux, “Investigation of High Voltage MOSFET Reliability in IKIRK Region,” IEEE Transactions on Device and Materials Reliability, VOL. 7, NO. 1, MARCH 2007.
    [64] E. M. Sankara Narayanan, G. A. J. Amaratunga, W. I. Milne, J. I. Humphret, and Q. Huang, “Analysis of CMOS-compatible lateral insulated base transistors” IEEE Transactions on Electron Devices, vol. 38, no.7, pp.1624-1632, 1991.
    [65] R. Versari et al. “Experimental Study of Hot-Carrier Effects in LDMOS Transistors” IEEE Transactions on Electron Devices, vol. 46, no. 6, pp.1228-1233, 1999.
    [66] P. Moens, G. Van den bosch, and G. Groeseneken, “Hot-carrier degradation phenomena in lateral and vertical DMOS transistors,” IEEE Transactions on Electron Devices, vol. 51, no. 4,pp. 623-628,Apr. 2004.
    [67] P. Moens, G. Van den bosch, and D. Wojciechowski et al. “Charge trapping effects and interface state generation in a 40V lateral resurf PLDMOS transistor,” in proc. 35 th Eur. Solid-State Device Res. Conf. Grenoble, France, 2005, pp. 407-410.
    [68] J.F. Chen, K.M. Wu, K.W. Lin et al, “Hot-carrier reliability in submicron-meter 40V LDMOS transistors with thick gate oxide,” in Proc. IEEE 43 rd Annu. Int. Reliab. Phys. Symp. San Jose, CA, Apr. 17-21, 2005, pp. 560-564.
    [69] C.C. Cheng, J.F. Lin, T.H. Wang, T.H. Hsieh, J.T. Tzeng, Y.C. Jong, R.S. Liou, Samuel C. Pan and S.L. Hsu, “Physics and characterization of various hot-carrier degradation modes in LDMOS by using a three-region charge-pumping technique,” IEEE Transactions on Device and Materials Reliability, VOL. 6, NO. 3, September 2006.
    [70] D. Brisbin, A. Strachan, and P. Chaparala, “PMOS drain breakdown voltage walk-in: A new failure mode in high power BiCMOS application,” in proc. IEEE 42rd Annu. Int. Reliab. Phys. Symp. Phoenix, AZ, 2004, pp. 265-268.
    [71] P. Moens, G. Van den bosch, and G. Groeseneken et al, “ A unified hot carrier degradation model for integrated lateral and vertical Ndmos transistors,” in proc, IEEE 15 th Int. Symp. Power Semicond. Devices and Ics, Apr. 14-17, 2003, pp. 88-91.
    [72] P. Moens, G. Van den bosch, and M. Nelson, “Electron trapping and interface trap generation in drain extended PMOS transistors,” in proc. IEEE 43 rd Annu. Lnt. Reliab. Phys. Symp. San Jose, CA, 2005, pp. 555-559.
    [73] V. O’Donovan, S. Whiston, A. Deignan et al. “Hot carrier reliability of lateral DMOS transistors,” in proc. IEEE 38 th Annu. Int. Reliab. Phys. Symp. Apr. 10-13, 2000, pp 174-179.
    [74] W. Sun, H. Wu, L. Shi, Y. Yi, and H. Li et al. “On-Resistance Degradations for Different Stress Conditions in High-Voltage PLEDMOS Transistor With Thick Gate Oxide” IEEE Electron Devices Letters. Vol.28, no. 7, pp631-633, 2007
    [75] S. Mahapatra, V.R. Rao, J. Vasi, B. Cheng and J. C. S. Woo, ”A study of hot-carrier induced interface trap profiles in lateral asymmetric channel MOSFET’s using a novel charge pumping technique,” Solid State Electron, vol. 45, pp. 1717-1723, 2001.
    [76] Chin-Chang Cheng, J. W. Wu, C. C. Lee, J. H. Shao and T. Wang “Hot Carrier Degradation in LDMOS Power Transistors” in Proceedings of 11 th IPFA, 2004.
    [77] G. Krieger, R. Sikora, P. P. Cuevas and M. N. Misheloff, “Moderately Doped NMOS (M-LDD)-Hot Electron and Current Driver Optimization,” IEEE Transactions on Electron Devices, vol. 38, no. 1, pp.121-127, 1991.
    [78] Y. Pan. K.K. Ng and C. C. Wei, “Hot-Carrier Induced Electron Mobility and Series Resistance Degradation in LDD NMOSFET’s,” IEEE Electron Devices Letters, vol. 15, no. 12, pp. 499-501, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE