簡易檢索 / 詳目顯示

研究生: 戴雅麗
Tai, Ya-Li
論文名稱: 應用TCAD及實作於矽基元件的最佳化
The Optimization of Silicon Devices by TCAD Simulation and Physical Implementation
指導教授: 連振炘
Lien, Chen-Hsin
李介文
Lee, Jam-Wem
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 101
中文關鍵詞: 電腦輔助設計模擬氧化鰭型場效電晶體多晶矽元件矽控變阻器靜電放電現象
外文關鍵詞: TCAD, finFET, TFT, SCR, ESD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we study the two major topics of semiconductor devices - Scaling down and Reliability and ESD - by TCAD simulation and physical implementation.
    For devices scaling down, we focus on silicidation process and multigate application. In silicidation, our study demonstrates that MOSFETs with increasing leakages and decreasing driving capability are correlated to the redistribution of the silicidation-induced doping which results in the devices with poly-depletion and flat band voltage shift. For scaling down with multi-gate approaches, we study the proposed LOCOS finFETs. Our simulation shows that the interspace oxide of LOCOS finFETs offers desired electrical isolation and its limited Si connection provides good thermal dissipation from the fin to the bulk. Therefore, LOCOS finFETs have nearly no self-heating under high output current condition and maintain low leakage current at off state.
    About the reliability and ESD issues, we are interested in the current (or voltage) stress behaviors and failure mechanism of several ESD devices: poly-Si diodes, poly-Si TFTs and SCRs. For the poly-si devices, we studied their behaviors under extremely high current condition. Theoretical analysis demonstrates that the open-circuit failure modes of poly-Si dvices are caused by the electrothermal-enhanced migration of disordered silicon atoms at grain boundaries.
    For the SCRs, we study their carrier distribution under different states. Our simulation results show that the voltage drop between the anode and the cathode highly depends on the minority carrier distribution in well regions. Therefore, to control the minority carrier distribution by different topological layout and doping concentration, one can manipulate the behavior of SCR.


    本論文主要藉由半導體工藝電腦輔助設計模擬(TCAD)及晶片實作研究半導體元件的兩大主題—(1)尺寸縮小及(2)可靠性與靜電放電現象(ESD)。
    在元件尺寸縮小方面,我們主要研究矽化 (silicidation) 製程與多閘極的應用。關於矽化製程,我們的研究結果顯示金氧半場效電晶體 (MOSFET) 的漸增漏電流及漸減的驅動能力與矽化製程引起的參雜改變有關。且此變化的參雜造成多晶矽閘的空乏區成型以及平帶電壓改變。關於多閘極的應用,我們研究區間氧化鰭型場效電晶體 (LOCOS finFET)。我們的研究結果顯示此種鰭型場效電晶體的區間氧化物提供有效電性阻隔,而其於鰭部與基板間的有限矽聯結則提供良好的熱傳遞。因此區間氧化鰭型場效電晶體於高輸出電流下幾乎沒有明顯溫度增加並於關閉狀態時保持低漏電流。
    在可靠性與靜電放電現象方面,我們主要研究幾個靜電放電保護元件 (多晶矽元件與矽控變阻器 (SCR) ) 於大電流或高電壓下的行為及其失效故障機制。我們的結果顯示多晶矽元件於極端大電流下展現開路故障模式,且此結果可歸因於在多晶矽微粒邊界上的矽原子受電熱效應所增強的原子遷移所導致。
    關於矽控變阻器方面,我們研究其在不同工作狀態下的載子分佈。我們的模擬顯示矽控變阻器在陽極及陰極間的壓降與井部的少數載子分佈有高度相關。因此,藉由元件的不同空間佈局及參雜濃度條整,我們可以調控矽控變阻器的動作。

    1 Introduction 2 Background 2.1 Challenges for device development 2.1.1 Scaling down for nano devices 2.1.2 Reliability for thin film devices 2.1.3 ESD and ESD devices 2.2 TCAD for device development 2.2.1 Nano device simulation 2.2.2 Reliability simulation 2.2.3 ESD simulation 3 Simulation Basics 3.1 Basic equations 3.1.1 Poisson equation 3.1.2 Continuity equations 3.2 Drift-diffusion model 3.3 Thermodynamic model 3.4 Hydrodynamic model 3.5 Quantum correction model 3.6 Software 4 Silicidation issues and related simulation exploratory 4.1 Introduction 4.2 Experiments and simulations 4.3 Results and discussion 4.3.1 Flat band voltage shift 4.3.2 Transfer characteristics 4.3.3 Poly-depletion 4.3.4 Process optimization 4.4 Conclusions 5 Simulation for multigate nano device structure optimization 5.1 Background 5.2 Simulations 5.3 Results and discussion 5.3.1 Driving current and leakage current 5.3.2 Heat dissipation 5.3.3 LOCOS spacing optimization 5.3.4 Geometric effects 5.4 Conclusions 6 Hydrodynamic simulation for thin film device reliability study 6.1 Background 6.2 Experiments and simulations 6.3 Results and discussion 6.3.1 Poly-crystalline silicon TFT 6.3.2 Poly-crystalline silicon diode 6.3.3 Temperature behavior by simulation 6.4 Conclusions 7 ESD simulation for SCR structure optimization 7.1 Introduction 7.2 Mechanism 7.3 Experiments and simulations 7.4 Result and discussion 7.4.1 Carrier distrubution at turn-on stage 7.4.2 Carrier distrubution at holding stage 7.4.3 Concentration effect on holding voltage 7.4.4 EB spacing effect on holding voltage 7.5 Conclusions 8 Conclusions Future work Bibliography List of Figures

    [1] J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38, 262, (1991)
    [2] B. S. Chen, and M. C. Chen, IEEE Trans. Electron Devices, 43(2), 258, (1996)
    [3] J. W. Lee, S. X. Lin, T. F. Lei, and C. L. Lee, J. Electrochem. Soc., 148(9), 530, (2001)
    [4] A. M. Mohammad, S. Dey, K. K. Lew, J. M. Redwing, and S. E. Monhney, J. Electrochem. Soc., 150, 577, (2003)
    [5] H. Suzuki, H. Yoshida, Y. Kinoshita, H. Fujii, and T. Yamazaki, Digest of Technical Papers of 1999 Symposium on VLSI Technology, 149, (1999)
    [6] A. Matsushita, T. Sadoh, and T. Tsurushima, Proceedings of 1998 International Conference on Ion Implantation Technology Proceedings, 2, 861, (1998)
    [7] Y. Li, J. Lee, and S. M. Sze, Jap. J. of App. Phy., 42 Part 1 (4B),2152, (2003)
    [8] D. Hisamoto, T. Kaga, Y. Kawamoto and E. Takeda, Tech. Dig. of IEDM, 833, (1989)
    [9] J. Wang and M. Lundstrom, Tech. Dig. of IEDM, 707, (2002)
    [10] A. Svizhenko and M. P. Anantram, IEEE Trans. Elec. Devices, 50, 1459, (2003)
    [11] C. H. Lee, J. M. Yoon, C. Lee, H. M. Yang, K. N. Kim, T. Y. Kim, H. S. Kang, Y. J. Ahn, Donggum Park and K. Kim, VLSI Technology Sym., 707, (2002)
    [12] T. Mizuki, J. S. Matsuda, Y. Nakamura, J. Takagi and T. Yoshida, IEEE Trans. Electron Devices, 51, 204, (2004)
    [13] K. Chung, M. P. Hong, C. W. Kim and I. Kang, IEDM Tech. Dig., 385, (2002)
    [14] Y. H. Tai, C. C. Pai, B. T. Chen and H. C. Cheng, IEEE Electron Device Lett., 26, 811, (2005)
    [15] M. D. Ker, T. K. Tseng, S. C. Yang, A. Shih and Y. M. Tsai, Proc. Int. Symp. VLSI Technol., Syst., Appl., 88, (2003)
    [16] M. D. Ker, Proc. IEEE Int. Conf. Electronics, Circuits and Systems, 325, (1998)
    [17] R. H. Dennard, F. H. Gaensslen, H, Yu, V. L. Rideout, E. Bassons, and A. R. LeBlanc, IEEE J. Solid State Circuits, SC-9, 256, (1974)
    [18] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices, Cambridge University Press, USA (1998)
    [19] D. Hisamoto, T. Kaga, Y. Kawamoto and E. Takeda, Tech. Dig. of IEDM, 833, (1989)
    [20] J. Wang and M. Lundstrom, Tech. Dig. of IEDM, 707, (2002)
    [21] A. Svizhenko and M. P. Anantram, IEEE Trans. Elec. Devices, 50, 1459, (2003)
    [22] C. H. Lee, J. M. Yoon, C. Lee, H. M. Yang, K. N. Kim, T. Y. Kim, H. S. Kang, Y. J. Ahn, Donggum Park and K. Kim, VLSI Technology Sym., 707, (2002)
    [23] H. Satake et al., SSDM, Sendai, 248, (2000)
    [24] R. G. Wagner, J. soden and C. F. Hawkins, Proc. EOS/ESD Symp., 49, (1993)
    [25] ESD Association Standard, ESD Sensitivity Testing: Human Body Model (HBM), S5.1, ESD Association Standard(1993)
    [26] R. G. Renninger, Proc. EOS/ESD Symp., 1991, 127, (1991)
    [27] ESD Association Standard, ESD Sensitivity Testing: Charged Device Model (CDM), D5.3, ESD Association Standard(1997)
    [28] ESD Association Standard, ESD Sensitivity Testing: Machine Model (MM), S5.2, ESD Asso-ciation Standard(1994)
    [29] H. Gieser, Ph. D Thesis, Technische Universitaet Muenchen TUM, Aachen, Germany (1999)
    [30] T. Maloney and S. Dabral, Proc. EOS/ESD Symp., 1, (1995)
    [31] N. Maene J. Vandenbroeck, and L. Bempt Proc. EOS/ESD Symp., 228, (1992)
    [32] T. Maloney and S. Dabral, Basic ESD and I/O Design, John Wiley and Sons, New York(1998)
    [33] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, Wiley, Chichester, England (1995)
    [34] C. Duvvury and A. Amerasekera, Proc. EOS/ESD Symp., 1995, 162, (1995)
    [35] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and M. Bohr, VLSI Symp., , (2000)
    [36] F. Mayer, C. Le Royer, G. Le Carval, L. Clavelier and S. Deleonibus, IEEE Transactions on Electron Devices, 53,8, 1852 (2006)
    [37] H. Tsuchiya and T. Miyoshi, IEICE Trans Electron, E-82-C,6, 880 (1999)
    [38] H. Ceric, R. Lacerda De Orio, J. Cervenka and S. Selberherr, IEEE Transactions on Device and Materials Reliability, 9(1), 4663689, 9 (2009)
    [39] J. Salcedo, J. Liou and J. Bernier, IEEE Electron Device Letters, 25, 9, 658(2004)
    [40] J. Salcedo, J. Liou and J. Bernier, IEEE Transactions on Electron Devices, 52, 12, 2682(2005)
    [41] G. Notermans, F. Kuper and J. Luchies, Microelectronics Reliability, 37, 10-11, 1457(1997)
    [42] M. Ker and Z. Chen, IEEE Transactions on Electron Devices, 51, 10, 1731(2004)
    [43] Ben G. Streetman and Sanjay Banerjee, Solid state electronic devices, 5th edition, Prentice Hall, (2000)
    [44] S. M. Sze, Physics of semiconductor devices, second edition, Wiley-interscience, USA(1981)
    [45] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, John Wiley and Sons, New York (1985)
    [46] TCAD Manual , DESSIS : ISE TCAD Manual, Release 7.0,Volume 4A, Part 12
    [47] R. Stratton, Phys. Rev., 126, 6,2002-14 (1962)
    [48] K. Blotekjaar, IEEE Trans. on Electron Devices , ED-17, 1, 38 (1970)
    [49] A. Benvenuti, G. Ghione,M. R. Pinto, J. W. M. Coughran, and N., L. Schryer, IEDM Tech. Diges 737 (1992)
    [50] S. Szeto and R. Reif, Solid-State Electronics , 32,4 , 307 (1989)
    [51] M. G. Ancona and H. F. Tiersten, Phys. Rev. B, 35,15, 7959 (1987)
    [52] M. G. Ancona and G. J. Iafrate, Phys. Rev. B , 39,13 , 9536 (1989)
    [53] A.Wettstein, Quantum effects inMOS devices, Ph. D. thesis , ETH , Zurich (2000)
    [54] J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38, 262, (1991)
    [55] B. S. Chen, and M. C. Chen, IEEE Trans. Electron Devices, 43(2), 258, (1996)
    [56] J. W. Lee, S. X. Lin, T. F. Lei, and C. L. Lee, J. Electrochem. Soc., 148(9), 530, (2001)
    [57] A. M. Mohammad, S. Dey, K. K. Lew, J. M. Redwing, and S. E. Monhney, J. Electrochem. Soc., 150, 577, (2003)
    [58] H. Suzuki, H. Yoshida, Y. Kinoshita, H. Fujii, and T. Yamazaki, Digest of Technical Papers of 1999 Symposium on VLSI Technology, 149, (1999)
    [59] A. Matsushita, T. Sadoh, and T. Tsurushima, Proceedings of 1998 International Conference on Ion Implantation Technology Proceedings, 2, 861, (1998)
    [60] Y. Li, J. Lee, and S. M. Sze, Jap. J. of App. Phy., 42 Part 1 (4B),2152, (2003)
    [61] Y. Li, S. M. Sze, and T. S. Chao Eng. Comput., 18 (2), 124, (2002)
    [62] D. Hisamoto, T. Kaga, Y. Kawamoto and E. Takeda, Tech. Dig. of IEDM, 833, (1989)
    [63] J. Wang and M. Lundstrom, Tech. Dig. of IEDM, 707, (2002)
    [64] A. Svizhenko and M. P. Anantram, IEEE Trans. Elec. Devices, 50, 1459, (2003)
    [65] C. H. Lee, J. M. Yoon, C. Lee, H. M. Yang, K. N. Kim, T. Y. Kim, H. S. Kang, Y. J. Ahn, Donggum Park and K. Kim, VLSI Technology Sym., 707, (2002)
    [66] J.P. Colinge IEEE Electron Device Letters, 9, 2, 97, (1988)
    [67] S. M. Sze Physics of semiconductor devices, second edition, Wiley-interscience, USA(1981)
    [68] M. Poljak, V. Jovanovic and T. Suligoj, IEEE: SUPPRESSION OF CORNER EFFECTS IN TRIPLE-GATE BULK FINFETS, 9, 2, 97, (2009)
    [69] Jam-Wem Lee and Howard Tang, Appl. Phys. Lett., 89, 103508, (2006)
    [70] W. Fichtner, K. Esmark and W. Stadler, Technical Digest of International Electron Devices Meeting (2001)
    [71] K. Esmark, W. Stadler, H. Gossner, M. Wendel, X. Guggemos and W. Fichtner, Proc. Electrical Overstress/Electrostatic Discharge Symp., 420, (2000)
    [72] T. Mizuki, J. S. Matsuda, Y. Nakamura, J. Takagi and T. Yoshida, IEEE Trans. Electron Devices, 51, 204, (2004)
    [73] K. Chung, M. P. Hong, C. W. Kim and I. Kang, IEDM Tech. Dig., 385, (2002)
    [74] Y. H. Tai, C. C. Pai, B. T. Chen and H. C. Cheng, IEEE Electron Device Lett., 26, 811, (2005)
    [75] M. D. Ker, T. K. Tseng, S. C. Yang, A. Shih and Y. M. Tsai, Proc. Int. Symp. VLSI Technol., Syst., Appl., 88, (2003)
    [76] M. D. Ker, C. L. Hou, C. Y. Chang and F. T. Chu, Proc. Int. Symp. Phys. Failure Anal. Integr. Circuits, 209, (2004)
    [77] W. Fichtner, K. Esmark and W. Stadler IEDM Tech. Dig., 14.1.1, (2001)
    [78] W. Lee and H. Tang, Appl. Phys. Lett., 89, 103508, (2006)
    [79] M. Gritsch, H. Kosina, T. Grasser and S. Selberherr, IEEE Trans. Electron Devices, 49, 1814, (2002)
    [80] B. Polsky, O. Penzin, K. El Sayed, A. Schenk, A. Wettstein and W. Fichtner, IEEE Trans. Electron Devices, 52, 500, (2005)
    [81] Y. Takahashi, K. Kunihiro and Y. Ohno, IEICE Trans. Electron., E82-C, 917, (1999)
    [82] T. Y. Chen and M. D. Ker, IEEE Trans. Semi. Manuf., 16, 486, (2003)
    [83] M. D. Ker and C. H. Chuang, Proc. Physical and Failure Analysis of Integrated Circuits, 2001, 85, (2001)
    [84] G. Notermans, A. Heringa, M. Van Dort, S. Jansen, and F. Kuper, Proc. IEEE Int. Reliability Physics Symp., 154, (1999)
    [85] K. H. Oh, C. Duvvury, K. Banerjee, and R. W. Dutton, IEEE Trans. Electron Devices, 49, 2183, (2002)
    [86] J. H. Lee, J. R. Shih, K. F. Yu, Y. H. Wu, and T. C. Ong, Proc. IEEE Int. Reliability Physics Symp., 609, (2004)
    [87] B. E. Weir, C. C. Leung, P. J. Silverman, and M. A. Alam, Proc. IEEE Int. Reliability Physics Symp., 399, (2004)
    [88] M. D. Ker and T. K. Tseng, IEEE Conf. Nanotechnology, 737, (2003)
    [89] M. D. Ker, Proc. IEEE Int. Conf. Electronics, Circuits and Systems, 325, (1998)
    [90] P. J. Mergens, C. C. Russ, K. G. Verhaege, J. Armer, P. C. Jozwiak, R. Mohn, B. Keppens and C. S. Trinh, IEDM Tech. Dig., 21.3.1, (2003)
    [91] M. D. Ker and K. C. Hsu, IEEE J. Solid-State Circuits, 38, 1380, (2003)
    [92] W. Fichtner, K. Esmark, and W. Stadler IEDM Tech. Dig., 14.1.1, (2001)
    [93] K. Esmark, W. Stadler, H. Gossner, M. Wendel, X. Guggemos, and W. Fichtner, Proc. Electrical Overstress/Electrostatic Discharge Symp., 420, (2000)
    [94] A. Weger, S. Voldman, F. Stellari, P. Song, S. Pia, and M. McManus, Proc. IEEE Int. Reliability Physics Symp., 99, (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE